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FOREWORD

"- The present report Is part of a two volume set which describes

a nonlinear solid rocket motor instability analysis and computer pro-

gram. Volume I contains the analytical basis for the computer program

and a discussion of the results obtained to date: Volume II of the set

describes the computer program and serves as a user's manual.

This investigation is entitled NUMERICAL ANALYSIS OF

NONLINEAR LONGITUDINAL COMBUSTION INSTABILITY IN METALIZED

PROPELLANT SOLID ROCKET MOTORS. The two volumes are additionally

subtitled as follows:

Volume I - Analysis and Results

Volume II - Computer Program User's Manual

This investigation was sponsored by the

Air Force Rocket Propulsion Laboratory
Director of Laboratories
Edwards, California 93523
Air Force Systems Command, United States Air Force

under contract number F04611-71-C-0060 with Robert J. Schoner as
technical monitor. Jay N. Levine of Ultrasystems (formerly Dynamic

Science) was program manager.

This technical report has been reviewed and is approved.

Paul I. Daily, Lt. Col. USAF

Chief, Technology Division
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ABSTRACT

The primary objective of the current effort was the development and

so i'on of a nonlinear analytical longitudinal instability model, which

would allow all of the various governing phenomena to be accounted for in

a coupled manner. The two primary elements of the current instability
analysis are a method of charactaristics solution of the two phase flow

in the combustico:i chamber of the motor, and a coupled calculation of a
14 transieit burning rate. The transient burning rate analysis presented,

" erein, is a un'.4ue and interesting development. It Is based on an extension

c che most popular, linear, harmonic combustion response model. The

,,::..-ent method z :1ows the calculation of propellant burning response to a

ý.:ressure disturbance of arbitrary waveform, for all time, including the

period immediately fctllowing the initiation of the disturbance. The analysis
also includes a model for velocity coupled response. Therefore, for the first

time, the nonlinear effects of velocity coupling on the growth of pressure

waves in a combustion chamber can be computed.

The instability solution, itself, begins with the calculation of the

steady state two-phase flow in the motor. The flow in the combustion

chamber is calculated by numerically integrating the equations of motion.

The nozzle flow is found using the constant fractional lag approximation. The

steady state conditions are then perturbed and the subsequent wave motion In

the motor is calculated numerically, using the method of characteristics.

The nature of the engine response Is dependent up. Mn the interaction the
various gain and loss mechanisms in the engine, which are, in turn, a

function of the propellant bu, ning response, the size and amount of parti-

culate matter present, the magnitude and shape of the initial disturbance

and the geometrical configuration of the motor.

The instability model is currently subject to the following limitations.

Only motoes with cylindrically perforated grain were considered. The gas-

dynamic flow was assumed to be one-dimensional and the particles in the

gas stream were taken to be of uniform size and inert. The nozzle flow is

assumed to be quasi-steady.
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A series of instability solutions have been calculated, wherein some

of the main parameters such as particle size, burning rate constants, and

initial disturbance waveform and magnitudE have been varied, in an attempt

to qualitatively assess the behavior and vplidity of the present model.
From all appearances, the behavior of the model is quite realistic and

limited comparisons with data have been quite encouraging.
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NOM ENCLAT URE

A - burning rate parameter, Eq. (4-14)

Ab - admittance function

A - nozzle admittance functionS~n
a - gas only, sound speed

a F - sound speed based on PF and TF

B - burning rate parameter, Eq. (4-32)
also, fractional lag parameter, Eq. (5-6)

Bv - burning rate parameter for velocity coupling

C - ratio of solid to gas specific heats, C /C
5 p

0C - constant in steady state burning rate, Eq. (3-5)

CD - particle drag coefficient

Ck - erosive burning constant, Eq. (3-5)

C - see ti

Cp - specific heat of gas at constant pressure
Cs - specific heat of solid particles

C v - specific heat of gas at constant volume

1 2P - defined in Eq. (7-34)
C 3, C 4

Dp - port diameter

E - normalized surface activation energy, Ew/RoTw
also, integral defined by Eq. (8-16)

E - activation energy of surface reaction

e - internal energy

F p - particle-gas interaction force per unit volume, Eq. (3-8)

f - frequency
also, as defined by Eq. (8-14)

G - defined by Eq. (7-8)

g - defined by Eq. (6-17)

H - defined by Eq. (4-20)

h - enthalpy

h 11 - defined by Eq. (8-12)

K - fractional lag constant, Eq. (5-3)

K' - chamber fractional lag constant, Eq.(7-44)

k - thermal conductivity, also complex wave number

vi

-



A

k - thermal conductivity of the solid particles

L - length of the grain, also fractional lag constant, i:q. (5-4)

L' - chamber fractional lag constant, Eq. (7-44)

Z - perimeter of the grain

M - Mach number, also number of points on initial line

Mb - Mach number at burning surface

m - particle mass, also surface mass flux

Nu - Nusselt number

n - pressure exponent in steady state burning rate

n v - constant in velocity coupled analysis, Eq. (4-75)

n - exponent of pressure dependence of surface reaction rate

P - pressure

P - reference pressure in steady state burning rate
ref

PF - chamber pressure

Pr - Prandtl number

p - pressure, also used for Laplace transform variable

SPl - defined by Equation (8-10)

.Q - heat release per unit mass

Qp - particle-gas heat transfer rate per unit volume, Eq. (3-14)
O w -heat of reaction for processes at burning surface

' q - see;

SR - gas constant, also normalized throat radius of curvature I
R - universal gas constant

Rb - response function, Eq. (4-35)

Re - Reynolds number based on particle diameter and particle-gas
relative velocity

RHS - right hand side of a characteristics compatibility relation

r - linear burning rate

Sb - area of burning surface

s - dimensionless Laplace transform variable, = w• 2

T - temperature

T - adiabatic flame temperature

t - time

tc - defined by Eq. (7-33)

u - axial velocity

ut - threshold velocity

W - defined by Equation (4-28)
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2 w -reaction rate divided by gas density
x - axial distance

a - growth constant

a - particle damping constant

S1p - defined in Eq . (8-35)

681 - particle to gas weight flow ratiG

P •2 - ratio of particle to gas mass burning rates, w p/W
Y - ratio of ,as specific heats, C /C

p v
6 - a small increment in time

6' - equal totc6

S2 - convergence criteria for characteristics calculations, also used

in velocity coupling analysis (Eq. 4-72)

S - thermal diffusivity of the propellantSS
A - defined by Eq. (4-27)

S - complex function of frequenoy, Eq. (4-8)

S- viscosity

"- equals Fx/'t•s s
o - density

PF - density based on PF and TF
- density of the metal oxide particles

os - density of the solid propellant
a - particle radius

c11, 2 - defined by Eq. (4-62)
T - nondimensional time, F 2 t/4Ks, also used in Section 2 to

denote period of oscillation

T - characteristic relaxation time for particle velocity, Eq. (3-1)
•T - characteristic relaxation time for particle temperature, Eq. (3-1)

I - defined by Eq. (5-10)

- phase angle

- nondimensional frequency, Eq. (4-9)

,J- mass burning rate, per unit length, per unit cross-sectional
area, Eq. (3-4); also occasionally used for angular frequency
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Subscripts

e - end of the propellant grain

f - flame

g - gas

S- for the 9th mode of oscillation

p - particle

0 - initial or stagnation value

t - at the nozzle throat

w - at the burning surface of the propellant

Superscripts

- in Sections 3, 5 and 6 only, denotes a dimensional -'..-iable

(' - denotes fluctuation

() - in Section 4 denotes steady state variable, in Section 5
denotes an "equivalent" gas value, in Section 7 denotes
an average quantity

- pertaining to a right running characteristic

( ) - pertaining to a left ninning characteristic
()(r) - real part of
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1. INTRODUCTION

Solid propellant rocket motors are often subject to chamber pressure

oscillation during the course of their firing. The existence of these

fluctuations is indicative of the existence of a coupling mechanism, or

mechanisms, between the combustion at the surface of the propellant and
the gasdynamic flow in the chamber. When the rate at which energy is
supplied to the flow, by this coupling, exceeds the rate at which energy

is lost through the various dissipative mechanisms that exist, the chamber

pressure oscillations are amplified. They may grow to such amplitudes

that the oscillating acceleration of the vehicle may produce failure of the

equipment or even failure of the motor.

Of the various unstable motions observed in solid propellant rocket

chambers, longitudinal combustion instability is currently the most

troublesome. The axial, or longitudinal, mode of combustion instability

occurs in the frequency range intermediate between the very low frequencies

of bulk, or L*, instabilities, and the high frequencies associated with the
tangential, or transverse, instability modes. Unlike transverse mode

instabilities, which are very often eliminated by the addition of powdered

aluminum to propellant formulations; the existence of a remedy of

comparable simplicity for longitudinal instabilities has not yet been

demonstrated.

Efforts to deal with the problem of longitudinal instability, most

logically, have begun with experimental, and analytical, investigations
designed to shed light on the governing physical phenomena. Both

laboratory scale experiments, and full scale firings, have identified the

existence of numerous, complex, mostly nonlinear, processes which actively

play a role in determining the stability characteristics of a rocket motor.

As a result of this complexity, investigators attempting to predict these

disturbances have, in the past, been almost universally forced to linearize

the equations governing the various phenomena. Attempts to solve more

realistic nonlinear models have been made, but, only by focusing on one

of the many processes at a time. In view of this, the primary objective of

this program was the development and solution of a nonlinear analytical

model for describing longitudinal mode instability, which would allow all

the various processes to be accounted for in a coupled manner. A second
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analyses of the burning rate response to harmonic disturbances.

The formulation of the boundary and initial conditions for the problem is

discussed in Sections 5 and 6. The numerical methods employed in solving

the governing equations are discussed in Section 7; while in Section 8,

a linear stability analysis is developed, for the purpose of comparison

with the nonlinear numerical results.

Time has limited the number of instability solutions which could be

obtained during the coutrse of the present investigation. However, as

shown in Section 9, the calculated results are quite interesting, and exhibit
all the proper qualitative trends. The nonlinear analysis described here'n

appears to have the potential to lead the way to greater understanding of
longitudinal combustion instability, and to the realization of more accurate

quantitative predictive capability.

A further discussion of the conclusions that can be drawn from the

present study may be found in Section 10. At the end of the report, in

Appendix A, the behavior of the transient burning rate model is examined

for some special cases.
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. . . . . . .. . ...

2. BACKGROUND AND SURVEY OF EXISTING EXPERIMENTAL AND
ANALYTICAL RESULTS

2.1 Finite Amplitude Waves in a Closed Resonant Tube

The problem of acoustic waves in a closed tube is of course a very

old one. Only those recent works concerned with finite amplitudes are

cited here. In simplest form, the experimental apparatus consists of a

rigid tube closed at one end and fitted with a piston at the other. All

reported experimental results, and all but one of the analyses give information

only about the waves after limiting amplitude has been reached.

A periodic motion can be excited in the tube at any frequency, but the

most interesting behavior occurs when the piston oscillates with a frequency

at or near one of the resonant frequencies of the tube. It has long been

known (see Ref. 1 and other works cited there) that as the amplitude is

increased, the wave motion in the tube changes from a simple sinusoidal

motion in both space and time, into one having both a continuous and a

discontinuous part. At sufficiently high amplitude, one or more weak shock

waves propagate to and fro. The appearance of weak "discontinuities" is a

consequence of the nonlinear convective effects and the dependence of the

speed of sound on temperature.

Analyses of the steady wave motion as a weak shock embedded in

a continuous periodic motion have been given by Saenger and Hudson (Ref. 1)

and Betchov (Ref. 2). Subsequently, Chester (Ref. 3) discussed in more

detail the relative importance of the mechanisms involved and produced a

single solution valid over a range of frequencies near resonance. He showed,

in agreement with Betchov, that the effects of heat conduction and viscous

forces provide small corrections to the inviscid solution but are not required

to limit the a-nplitude of the motion.

In Ref. 4, Coppens and Sanders analyzed the motion in terms of the

generation of harmonics. Their results are not carried far enough, explicitly,
to apply to a discontinuity. They also quote measurements which, as do

other experimental observations, show an important feature, namely the

appearance of harmonic distortion of the waverform at quite modest ampli-

tudes. For example, when the amplitude of the fundamental mode is approxi-
mately one percent of the ambient pressure, the amplitude of the second

2-1



harmoric is already fifteen percent of the amplitude of the first harmonic.

A discontinuity is apparent when the amplitude is one-tenth of the ambient

pressure. This is a general'result for acoustic waves in resonant tubes--

nonlinear behavior is obvious at these low amplitudes.

On the other hand, in solid propellant motors, quite clean sinusoidal

motions, with very little harmonic content, are often observed to amplitudes

as high as 20% or more of the average pressure. The explanation for this

has not been definitely established, although it mus, evidently rest on the

behavior of the combustion processes.

The stability of wave motions in a rocket motor is a primary problem.

It is then necessary to examine the transient growth of waves from some

specified initial disturbance. The corresponding problem for waves in a

resonant tube has been treated in only one work, Ref. 5. Perhaps the main

reason for this is that the situation arises only for a self-excited oscillating

system, and hence is not of interest when waves are driven by external means.

The computation of Ref. 5 does not include the influence of combustion or

mean flow, and hence shows only the transient development of the weak

discontinuity. Numerical results were reported for a finite-difference

calculation and for the method of characteristics.

As an aid to interpreting later results for the behavior of nonlinear waves

in a motor, it is useful to sketch an idealization of the motions in a resonant

tube. Measurements of pressure are usually made at the end of a chamber,

but it is also interesting to see the distribution of pressure along the chamber

as it varies in time. Three cases will be examine: a purely sinusoidal

oscillation at the fundamental fr( jency, a weak shock, and the sum of

these two. These are shown in Figures 2-1 to 2-3, with the distribution

of pressure shown for every eighth cycle. The position of the shock

wave relative to the sinusoidal oscillation has been chosen such that it

arrives at one end just as the sinusoidal pressure at that end is a

maximum. This will not in general be true in actual cases, owing to

the influence of energy losses, ave.:age flow and, of course, strongly

nonlinear effects. Also, for the example shown here, the shock is assumed

to be sufficiently weak that it propagates always at constant speed equal to

the sound speed for the standing wave; the period of both motions is T.

2-2



- - -+ , • + •

0• p'(x=L)

T/8

T/42

I'5 T /A
s,/8 •

3 T/4

7'r/8 "•

T

t

x=O x=L

Figure 2-1. Distribution of Pressure Along the Chamber and Pressure
at x L for a SinuFoidal Standing Wave
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Figure 2-3. Distribution of Pressure Along the Chamber and Pressure
at x = L for a standing wave with a weak travelling
shock wave

Note that if the standing wave is weak, so the motion is dominated by a
travelling shock wave, the pressure measured at one end appears roughly
as a sawtooth or triangular wave. In time, the pressure jumps abruptly, and
then decays until it jumps again upon the next arrival of the shock. Many of
the pressure traces reported in the work at GARDE and SRI, discussed below,
exhibit, qualitatively, this kind of behavior. Even for the case of nonlinear
motions in a simple resonant tube, the pressures measured differ from the
form shown here, owing to contributions from many harmonics.
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It is clear that previous work on the classical problem of waves in a

resonant tube provides background, but no useful results for the problem of

transient waves in a rocket motor.

2.2 Experimental Results for Longitudinal Waves in Solid Propellant
Rocket Motors

Longitudinal instabilities arise spontaneously in full-scale motors--

a number of examples exist, but few have been reported in the open literature.

The most recent reports of such observations appear in Refs. 6-8. Most of the

data which are available for motors have been taken in laboratory devices,

and almost all involve pulsing.

It is possible to produce sharp fronts propagating in a tube by introducing

an impulse of mass, momentum, or energy. This may be done, for example,

with an electric spark or a small explosive charge. If the tube contains only

an inert gas, the subsequent motions are not particularly interesting--they

die. For a rocket motor, however, introducing a pulse during a firing is a

useful--indeed, the only--means for determining completely the stability

characteristics. The combustion processes constitute a source of energy;

the amplitude of the pulse may grow, remain unchanged, or decay. Whatever

happens must, of course, reflect the nonlinear conflict between the gain and

loss of ene" gy for the pulse.

Qualification of liquid rocket motors by pulsing has been a standard

procedure for some time. Although the technique has, for practical purposes

essentially not been used for solid propellant motors (an exception is program

for developing motors used in the Canadian "Black Brant" vehicle, cited in

Ref. 17), there exists a substantial amount of laboratory data for instability

studies using T-burners as well as burners with cylindrical configurations.

Only results for end-vented burners will be discussed here.

It should be noted that in laboratory tests, the strength of the pulse

can be controlled, although precision is a problem. Thus, it is possible

to produce perturbations much larger than one would normally encounter in

an actual motor, as, for example, might occur due to partial blockage of the

nozzle by a small piece of material. Laboratory tests therefore offer more

flexibility, and by proper interpretation should be applicable to real motors.

2-6



A significant amount of experimental data has been taken dt the

Canadian Armament and Research Institute (CARDE) (see Refs. 9-18) and

at the Stanford Research Institute (Refs. 19-22). More recently, work on

small pulsed motors has been done at the Aerojet-General Solid Propulsion

Company (Ref. 23). Limited results on spontaneous longitudinal oscillations

have been obtained at the Naval Weapons Center (Ref. 24), for a center-

vented configuration. A few observations were reported earlier by Hercules,

Inc. (Ref. 25) and by the Ballistics Research Laboratory (Ref. 26).

2.2.1 Data Taken at CARDE and SRI

In both the CARDE and SRI work, pulses were introduced at the head end

of a motor by introducing small explosive charges. Apart from a few important

visual observations (Refs. 13, 15 and 16) the data consists of pressure

measurements taken at the head and aft ends of the chamber. Rectangular,

slotted, star, and other cross-sections have been used, but most of the

tests have been made with circular ports. Experimental variables which

have been studied include chamber diameter and length (hence frequency),

throat/port area ratio (hence chamber pressure and Mach number), initial

temperature, and composition of the propellants. The last involved ballistic

additives and aluminum content as well cs changes of binder and size and type

of oxidizer.

Pressure traces suggest the presence of one or more discrete finite

pressure waves propagating up and down the chamber. (See Figures 1-3 and

following remarks). Subsequently, optical observations (Refs. 13, 15, and

16) established that indeed the instability involved a weak shock wave,

usually travelling with Mach number less than 1.2. It is evident from the

experimental results that the disturbance introduced by the explosive charge

very rapidly settles to the nearly planar wdve travelling to and fro in the

chamber. The strength is a function of position in the chamber, mainly

because of the losses incurred upon reflection at the ends, particularly

at the nozzle. The influence of the mean flow was more pronounced during

travel from the nozzle to the head end; the wave front was then concave in the

direction of propagation.
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The wave motion therefore appears to be analogous to the case of

the classical resonant tube driven at high amplitude, an idealized example

of which is shown above in Figures 2-1 to 2-3. However, in a motor, there

are obviously strong perturbations due to the combustion and related

processes. That the instability is often predominantly a discrete travelling

wave (in some cases two waves are present) is probably related to the

pulsing, but insufficient information is given in the accounts to draw any

conclusions. In the CARDE work, the explosi',e charges used were 0.3 gm

to 12 gm depending on the size of the motor. No further details are given.

Moreover, only portions of a few records are reproduced and all show

the discrete waves very shortly dfter the pulse. It is not possible to deduce

any information about growth or decay rates of the waves. Indeed, in the
latest work reported (Ref. 18), only time averaged pressures were recorded.

of The experimental results therefore relate to the qualitative question

*of whether a pulse is stable or unstable, although in a few cases the limiting

amplitudes are given. The severity of the instability is interpreted usualiy

in terrbs of the shift of mean pressure.

In the motors used, progressive burning causes the mean pressure to

rise dfzring a firing; testing the stability characteristics consists of intro-

ducing a sequence of pulses which therefore occur at successively higher

pressures. Typically, pulses early in a firing, at lower mean pressures,

may be stable, while those at the higher pressures late in the firing may

produce the travelling wave instability. (It is of course possible that in

some cases all pulses may be stable or all unstable). Since there is

generally an increase of the mean pressure when the pulses are unstable,

there are some delicate questions involved in determining a stability

boundary with any precision. How this has been done in the work cited

(especially Refs. 13 and 18) will not be discussed here; it is thoroughly

discussed in those references).
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The behavior of the mean pressure during a firing in which an unstabl.,
pulse is initiated is sketched in Figure 2-4

Meane rActual mean pressure

Pressure

ressure during
stable operation

Pulse Time
initiated

Figure 2-4. Mean Pressure for a Typical Firing from
the CARDE and SRI Work

If no pulse is introduced, the firing is normally stable; thus the data truly

relates to a problem of nonlinear instability. Much of the interpretation of
data is based on plots of mean chamber pressure, measured at a fixed fraction

of web burned, versus K , the ratio of burning surface to throat area. An

example is shown in Figure 2-5; such data can be obtained, for example,

from a series of firings identical except for the initial value of throat to

port area ratio.
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Locus of unstable
operation I

Mean
Chamber
Pressure

"cS Statable operation

I-I
K = Burning Surface Area

n Nozzle Throat Area

Figure 2-5. Sketch of Stable and Unstable Operating
Pressures for a Fixed Fraction of Web
Consumed

The intersection of the two lines in Figure 2-5 gives "critical" or "threshold"
values of pressure and K

n°

Early work seemed to suggest that the dynamical characteristics of many

propellants could be correlated in terms of the threshold values of pressure
and Kn (Refs. 10,12 and 21). However, subsequently (Ref. 18) It was

established that not only was this correlation severely limited by the motor

configuration, but also that by no means all propellants could be characterized
by the same stability boundary. Even worse, in many cases the stable ana

unstable lines shown in Figure 5 had slopes so nearly alike that a well-defined

threshold point could not be established. As a result of the last conclusion,
Roberts and Brownlee (Ref. 18) were forced to interpret their data in a

different way. They chose to use the difference of the mean pressures for

stable and unstable operation, taken at some arbitrary value of the stable
value (1200 psia).
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It is therefore not possible at the present time to discuss this data

in the context of analysis. Obviously there is a great amount of information

contained in the experimental results. The qualitative trends have been

discussed thoroughly in Reference 18, but it seems worthwhile including

here a brief summary of the main conclusions.

(i) For a given propellant and grain geometry, there is always an

operating pressure above which finite disturbances are unstable.

This has been found true for all propellants tested by both SRI

and CARDE. It should be noted that theoretically the effects of

the mean flow, and hence Mach number, are important to the

question of stability. No attempt has been made, apparently

to correlate data with this parameter, or to determine its influence.

The proper strategy is by no means obvious at the present time.

(ii) Although the time-averaged pressure increases with time

(see Figure 4) the amplitude of the wave (change of pressure

divided by the mean pressure) measured at the head end remains

essentially constant. The amplitude is also insensitive to the ratio

of port-to-throat area, and Kn. Thus, there appears to be a

limit cycle determined largely by the processes occurring during

propagation.

(iii) Tests in motors geometrically &.ýaled from lengths of 20 inches

to 80 inches show that the larger motors remain nonlinearly

stable to higher operating pressures. The design of the nozzle

has very little influence. Increases to larger sizes (180 inches)

showed only a small further change in the minimum stable

operating pressure.

(iv) For a given propellant and grain cross-section, motors having

"low" values of length to port diameter (and hence higher

frequencies for the longitudinal mode) tend to be more stable.

"Low" here means about five or less. At larger values, there

seems to have been relatively little influence on the unstable

waves. Whether or not his behavior is closely related to the

frequency response of the propellants is not known.
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(v) Changing the grain cross-section has essentially no influence

if Kn is fixed. In other words, the waves really are close to

being one-dimensional.

(vi) Very roughly, propellants having high burning rates tend to have

higher threshold pressures. Put another way, it appears that
if all variables including the mean pressure are fixed, an

increase in burning rate (as, for example, by adding rate modifier

or ballistic additive) is a stabilizing influence. This is contrary

to much of the evidence for linear stability.

(vii)Addition of lithium fluoride which reduced the burning rate

of an aluminized propellai, greatly reduced the threshold

pressure and in fact produced "extremely violent instability
at practicable Kn levels" (Ref. 13).

(viii) It is difficult to generalize about the influence of aluminum

(Ref. 18). However, it certainly is true that the addition of
aluminum is by no means a guaranteed stabilizing influence

and may very well aggravate a problem. This has been noted

also in other works (Refs. 24 and 25, for example).

In summary, the data reported in these works is related directly to

nonlinear stability. However, since there is no information concerning

the growth and decay rates of pulses, the measurements cannot be treated

quantitatively within the analysis presently available or covered in the work

reported here.

2.2.2 Other Experimental Results

The early observations r&aported in References 25 and 26 contain

insufficient detailed information to permit quantitative interpretation. One

of the main conclusions of Reference 25, however, is of considerable

practical interest, and is consistent with (viii) above: The addition of

aluminum may cause a stable motor to become unstable in the longitudinal

mode.
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Although the observations discussed briefly in Ref. 24 were taken in

a center-vented configuration, which will not be treated in the analysis

discussed here, the data are important for at least two reasons. First,

the unstable motions arise spontaneously, and second they exhibit very

distinct nonlinear behavior.

The more recent measurements taken by Micheli (Ref. 23) are

potentially very useful. These comprise approximately two dozen firings

of tubular motors having a fundamental frequency of about 800 Hz for the

longitudinal mode. The motors were pulsed, but spontaneous instabilities

were also observed. Detailed records are available, but unfortunately the

data have not been reduced from the raw state. It is particularly important

that growth and decay rates can be found from the records. The instabilities

appear to be mainly standing waves.

The same propellant (ANB3066) was used in all tests. As a result of

current efforts in several laboratories, the dynamical characteristics should

be quite well known in the near future. One interesting conclusion, based

on a comparison of two firings, is that, as Brownlee has reported, an

increase of mean pressure se( - to be a destabilizing influence. Linear

analysis (Section 8) shows that Lne major reason for this behavior is the

decrease of the Mach number of the mean flow, and hence a decrease in the
losses at the aft end, as the mean pressure is increased. Some of the

numerical examples presented later in the present work have been based

on these pulsed-motor firings.

2.3 Analytical Work on Longitudinal Instabilities

The numerical analysis discussed in the present report is, in an

essential way, a new contribution to understanding the problem of nonlinear

instabilities in solid propellant rocket motors. That is, in no previous work

have the gas dynamical nonlinearities been taken into account in a computation

of transient wave motions. In this section, what has previously been done

is briefly summarized.
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Available analytical works which are relevant here may be conveniently

divided into two classes: those which are concerned primarily with the problem

in solid propellant rockets, and those which are concerned with other kinds
of nonlinear wave motions mainly in liquid rocket motors. None treat the

problem in the detailed quantitative manner discussed here. On the other
hand, they may provide certain results more easily and economically than an

elaborate numerical calculation.

A very special feature of the longitudinal instability in solid propellant

rocket motors is that there are necessarily substantial fluctuations of the

gas velocity parallel to the burning surface. The combustion processes are

surely sensitive to these unsteady motions, a phenomenon called "velocity

coupling." There must also be fluctuations of pressure, to which the

combustion processes will respond, producing "pressure coupling."

Pressure coupling must always be present under unsteady conditions, but

velocity coupling need not be, as, for example, in purely radial modes in

a cylindrical chamber, or in an end-burner oscillating in a longitudinal mode.

Consequently, much of the work concerned with longitudinal

instabilities in solid propellant rockets has been directed to characteristics
and possible effects of velocity coupling. (Refs. 27-31). A fundamental

characteristic of velocity coupling is thdt it is intrinsically nonlinear. This

is a consequence of the fact that the combustion processes respond to the

magnitude but not the direction of velocity fluctuations, thereby introducing

rectification effects. This idea has been discussed in considerable

detail In the works referred to. The stability of motions and the possible

generation of harmonics have been discussed. But growth of waves to a
limiting amplitude, and the nonlinear effects within the volume of the chamber

have not been studied. It should be noted that since the nonlinearity

associated with velocity coupling is of first order in the amplitude, while

the ý-as dynamical nonlinearities are of second order (and higher) the

nonlinear influence of the velocity coupling should be significant at

relatively lower amplitudes. It is not presently possible to establish this

conclusion definitively.

Two qualitative consequences of nonlinear velocity coupling are that
higher harmonics should be generated and that an increase of mean chamber

pressure may be produced. Both features are evident in some of the data.
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The connection is appealing but cannot at this time be supported quantitatively.

The major problem in doing so is that the coupling cannot be described

quantitatively. Particularly in Reference 30, and in subsequent unpublished

work, one may find speculations and estimates, but all conclusions remain

tentative. However, nonlinearities and the mean flow in the chamber are

ignored.

In Reference 22, the group at SRI attempted to interpret their data in

terms of a model for the coupling between a small-amplitude pressure

disturbance and the combustion processes at the surface. Certain aspects

of the gas dynamics in the chamber (but not the mean flow) are discussed

qualitatively and to some extent quantitatively. This work was based on

the idea that the instability observed is a shock wave sustained by mass

addition at the boundary, which in turn is related to a response function

for pressure coupling only. They supposed that the response function had

to have a certain arbitrarily chosen minimum value in order that the wave

exhibit sustained periodic motion. They then examined the values of

parameters appearing in their formulation of the response function to

determine what values were required to match some observed stability data.
Although those results appeared at the time to be satisfactory, they

are severely limited. No attempt was made to account in detail for the

losses in the system; only a few test results were checked. Moreover,

the relationship of the technique, and data obtained in the laboratory to the

full-scale motors has not been treated.

The problem of combustion instability in liquid rocket motors has ofIourse motivated a large number of works in the past twenty years. Of those,

References 32-34 are concerned with the longitudinal, discrete wave motions.

The techniques used are applicable only to periodic shock waves and hence

have nothing to do with the transient growth of waves, although nonlinear

stability is examined. The same sort of analysis was applied in Reference

35 to an end-burning solid propellant rocket motor. Obviously, because of

that restriction, the important influence of mass addition along the lateral

boundary is absent.

A modification of Galerkin's method has been used in References 37 and

38 to study stationary nonlinear wave motions in liquid propellant motors.
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Extension of the technique to solid propellant motors with mass addition at

the boundary, and to study travelling discrete pulses is not obvious and

might encounter serious difficulties. Moreover, the transient growth or

decay is not simply represented, and ultimately numerical computations

are required. The important advantage of the approach is that only ordinary

nonlinear differential equations need be treated.

In Reference 38, the observation that the instabilities in solid

propellant motors often remain simply sinusoidal was used as the basis for

constructing a single nonlinear ordinary differential equation to describe

the motion. The equation is that for a nonlinear oscillator, and its solution

gives a very good qualitative--to a limited extent quantitative--representation
of transient growth of waves in T-burners. The failure of that work to

produce anything like the harmonic content actually observed (albeit small)

has motivated the work in Reference 39. It appears that the results will be

simple to use and applicable to three-dimensional as well as one-

dimensional, motions.

All of the analyses discussed above involve approximations of one
sort or another. It is practically impossible to c'"termine how good they are,

particularly when the periodic motions are not re. resented as simple shock

waves. Comparisons with experimental data are not entirely satisfying

since usually fairly good results can be obtained by choosing appropriate

values for the many parameters which necessarily arise. The situation will

be much improved if an "exact" numerical analysis becomes available for

checking approximate analyses. Thus, even if--as is likely the case-- it

should be impractical to use numerical calculations to attempt correlations

of all available data, nevertheless, an important gap is filled. A

reasonable goal to head for is an approximate analysis valid for any

configuration, and an accurate numerical analysis which can be used to

check the approximations used, at least for one-dimensional problems.

2.4 Nonlinear Analyses of Instabilities in Liquid Rocket Motors

In addition to the works discussed above, there are some calculations

of nonlinear waves in liquid rocket motors which are not applicable to the

problem covered here but should be mentioned for completeness. One of
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the most widely applied nonlinear instability models was originated by
Priem and Guentert (Ref. 40). Their work has been modified and extended

by several different investigators (Refs. 41-47), however, the model in all
its forms is basically limited to the consideration of a two phase, liquid
drop-gas, reacting mixture in a thin annulus. Depsite some of the short-
comings of the model, it does lead to the definition of stability limits in
terms of engine design parameters; a feature which has led to a better
understanding of liquid rocket instability. Priem's model is, however,
not particularly well suited for an extension to solid rocket engines, and
is limited to the consideration of transverse instability modes which are
not being considered in the current program.

Burstein and Schechter (Ref. 48) have developed two-dimensional
transient models. Two separate and complementary programs were developed
describing, respectively, a pancake type motor (r- 8 model) and a toroid
with incremental thickness Ar (toroidal or 8 -z model). The toroidal model
is the first nonlinear analysis for investigating both tangential and
longitudinal motions. Limited results were obtained mainly due to the
excessive expense associated with solving two-dimensional transient
governing equations. The pressure amplitude determined using the pancake
model appeared to be unrealistically high. This can be partly attributed to
energy accumulation in the plane z = constant. This is very similar to the
constant energy assumption in the annulus required by the Priem analysis.

Recently Agosta (Ref. 49) developed a three-dimensional transient
analysis. Numerical analysis was only carried out only for the one-
dimensional case. Nonuniform droplet temperature was considered as a
result of assuming finite thermal conductivity. Evaporation kinetics for
nonequilibrium conditions were also included (Ref. 50) although the validity
of this work at high pressure has yet to be proved. Theoretical wave form
results were obtained for the transient one-dimensional model.

Many nonlinear extensions to the linear theory of the time lag model
have been developed in studying instability of liquid rocket engines. Various
approximation methods were used and the analyses do not depend totally on
computerized solutions as those previously described. Based on this time-lag
concept, Sirignano and Crocco (Ref. 32) studied longitudinal combustion
instability for pressure waves of finite amplitude. Mass and energy addition
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was assumed to occur only in an arbitrarily thin region next to the injector
face. The solutions were shown to be unstable thus indicating the

possibility of triggering longitudinal instability. Based on similar concepts

Zinn (Ref. 51) studied transverse mode instability using oscillatory nozzle

flow conditions while Sirignano employed the short nozzlP concept.
Michell (Ref. 33) extended the work of Sirignano to include possible

discontinuous waves and distributed combustion. In this mariner he was

I iable to show that the final form of triggered longitudinal instability

consisted of shock waves moving back and forth along the chamber. As
noted above, the Galerkin method, with some modifications has been

applied to some problems associated with combustion instability in liquid
rocket engines. The important simplification achieved by the Galerkin

method is that the nonlinear partial differential equations governing the

problem are replaced by nonlinear ordinary differential equations. This is

achieved by direct integration of the original equations over the volume of

the chamber. Time remains as the sole independent variable. It is therefore

natural to consider a disturbance which is distributed in space and maintains

essentially the same spatial form in time, but has amplitude which changes

nonlinearly in time.

Unfortunately, the analyses developed for liquid rocket instability

studies cannot be easily applied to investigate solid propellant motor problems.

One of the most crucial parts of all combustion instability problems is the

coupling between the flow and the combustion processes. It is there that

the source of energy for exciting and maintaining combustion instability

resides. Heterogeneous combustion processes of solid propellants are totally

different from liquid droplet burning which are usually governed by the rate

of vaporization and/or gas phase kinetics. furthermore, the spatial

distribution of solid propellant grains, as the case of motors with

cylindrically perforated prppeflant grains, presents an entirely different
problem formulation as compared with head-end injectors employed in liquid

engines. As shown very strikingly by the results obtained here, the truly
transient character of the burning under unsteady conditions is a fundamental

part of the problem. Essentially all of the computations for instabilities

in liquid rockets involve the assumption of quasi-steady coupling between
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the flow and combustion. If that assumption were used in the present

work, the results would be unrealistic and misleading.

The works of Powell and Zinn (Refs. 36,37) are most applicable to
the analysis of standing waves where disturbances are distributed in space

and maintain the same spatial form in time. These methods, with difficulty,
could probably be modified and/or extended to treat solid rocket longitudinal

instability. However, it is doubtful that all of the nonlinear coupling effects

could be properly accounted for.
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3. EQUATIONS OF MOTION

3.1 Discussion of the Mathematical Model

The flow in the combustion chamber of a metal loaded solid propellant

rocket engine is calculated from a set of one-dimensional, unsteady, two-

phase flow equations. Before presenting the equations, the assumptions

upon which they are based are discussed.

It is assum!ed that the gas is ideal and nonreacting; the flow is inviscid
and one-dimensional; the particles are spheres of a single size with

uniform internal temperature, the particles are of negligible volume and do
not interact with each other. The mass and particles coming from the
burning surface are assumed to enter the chamber normal to the burning

surface with zero tangential momentum, and at the adiabatic flame tempera-

ture.

Most solid rocket engine combtstion chambers do not have rapid area
changes, and the time for a pressure signal from the propellant surface to

reach the centerline is usually a small fraction of the period of the longi-
tudinal pressure waves; hence, a one-dimensional analysis should provide

a reasonable approximation to the flow.

The combustion of a metal loaded solid propellant does not directly
produce solid particles. The solid particles--aluminum oxide for aluminized

propellants--are formed by the combustion of metal droplets which have
been entrained by the gas flowing over the burning surface( 61 ). In the current

work, however, the formation and combustion of the metal droplets has not
been modeled and inert solid particles are assumed to be carried into the
flow by the burning gases at a specified, and constant weight fraction.

In the analysis the particles are also assumed to be all of the same

diameter, and all particles at a given location are assumed to have the
same velocity and temperature. In actuality, the particle sizes form a
distribution, which is at least bimodal due to two modes of oxide for-

mation (61). Quantitative particle distribution functions are not available,

but the particle formation mechanisms are such as to produce both small

O-2M•particles (smoke) and larger 5-20A particles.
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Particle injection takes place continuously along the entire length of

the chamber. Within a small volume, at any one time, various particles

may possess different velocities and temperatures (even if they are all of

the same size). This is a result of the fact that the history (trajectory) of

each particle is different, and, in time, particles from different locations,

injected at different times, can be in the same place. The ability to

distinguish between particles because of their varying past histories is

diminished with time, since all the particles eventually acquire the local

velocity and temperature. For particles of radius, a, mass, m, moving in

a gas with viscosity, L , characteristic times required for the particle to

approach the local velocity and temperature may be defined (for Stokes

flow) as:

m
Tv 6Tr ay

(3-1)
mC mPr

T T 4 T4rrk 4,Top

Under typical conditions encountered in a solid rocket motor rv and

TT are usually about 0.1 to 0.01 milli-seconds; only a fraction of the

typical period of a longitudinal wave. Therefore, the current assumption

that all particles at a given location and time have the same velocity

and temperature, is a reasonable one. Although this assumption is a

reasonable one it raises the conceptual problem of how the particles

injected at a given time instantaneously acquire the local velocity and

temperature of the gas. There are two modes by which this nonphysical

event could be postulated to occur. The required energy and momentum

could be instantly acquired from the gas, corresponding to infinite drag

coefficient and Nusseit number. Or, alternatively, the newly injected

particles may be said to instantly exchange energy and momentum with the

other particles through collisional effects (infinite cross-section). The

choice of one, or the other, of these postulates is reflected in the momentum

and energy equations; however, as might be expected, as long as 'rv and

TT are small compared to typical particle stay times in the chamber, the
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choice makes 'ittle difference.

The equations, as used herein, imply the assumption of instantaneous
acquisition of momentum and energy through collisions. The alternate forms

of the equations are presented, for reference, in a footnote to the equations.

The assumptions previously mentioned, and discussed were made to
allow the formulation of a relatively realistic nonlinear combustion

instability model, without undue complication. The present model should
allow for a reasonable assessment of this type of approach, and should it

prove to be warranted, the model may be enhanced by the removal of one.

or all, of the above assumptions.

3.2 Conservation Equations

Subject to the previous discussion, the equations of motion for the
two phase mixture are as follows:

Continuity
Gas Phase (P*"*) + .2 (p*u*A*) = *A* (3-2)

Particles A (P*A*) + b (P* u*A*) = w*A* (3-3)
Partcle p , X p p p

where asterisks denote dimensional variables, p* and p* are the gas and
p

particle densities, respectively, u* and u* are, respectively, the gasP
and particle velocities, A* is the chamber cross-sectional area, while

W* and w* are the mass flux of gas and particles given off by the propellant
p

per unit length, per unit cross-sectional area.

The quantity, w*, is related to the burning rate of the solid propellant,

r*, as follows:

p*r* L*
3 (3-4)
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where o* is the density of the solid propellant, e* is the perimeter of the

grain, and p1 is the weight ratio of solid particles to gas, The steady

burning rate, r*, is assumed to have the form

u*) *p (3-5)
Lref J(+C *

Momentum

Gas Phase ._A_ (p*u*A*) +-ý- - (P*u* 2A*) = - A*+ F*A* (3- n)6t* Xx* p

Particles - (p u*A*) + (puA*) F*A* (3-7)
t p p x* p p p

where the term F* represents the effect of momentum transfer between the

particle and gas. The momentum interaction is equal to the dr'ag force

exerted by the particles on the gas, per unit voiume, and is given by

.=3 P*p* (-8
S8 C lu*- u*l(u*-u*) (3-8)

8pm p p

where c* is the particle radius, p* the density of the solid particles and

CD is the drag coefficient of the particles. The drag coefficient CD is

obtained from a well-established correlation of the so-called "standard"

drag coefficient versus Reynolds number data. These data represent

measurements for a single sphere in steady flow. The formula used was

originated by Kliachko" 6 3), and is,

SD Re 6

The second term in the above equation represents a correction to the Stokes

value, 24/Re, and allows the formula to be used at Reynolds numbers up

to several hundred.
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The gas and particle momentum equations (3-6) and (3-7) can be

rewritten in modified form by subtracting the respective continuity

equation, (3-2) or (3-3), after it has been multiplied by velocity (u* or
u* as the case may be). The resulting modified momentum equations are:p

Gas Phase+ p, +u_... * + p'u* u _ _a* +PF*at* a x* =-* B* x* +Fp (3-10)

Particles+ p* -! +p*U* p = p (3-11)
_p at* p p - p p- p

Energy~

The energy equations for the particles and gas can be written in several

different ways, in terms of internal energy, enthalpy, temperature, entropy,

etc. The equations are written below in terms of temperature,+I
Gas Phase p*C* T*t + p*u*C* -T* 1 a (P*A*)+ u* at p ax* A* at* ax*

(3-12)

+ W*[CL(T* - T*) + + - u*) +

aT* u*2
+ *~oC* S + P*u'C* -- ! )

Particles P= *[C*(T*-T*-p S t* p p s Fx* p s p zj

.* (3-13)
p

+As discussed in Section 3. 1, the momentum and energy equations are slightly
altered if it is assumed that the entering particles immediately acquire their
momentum and energy from the gas flow. The differences are as follows: the
tern, u, 4* must be subtracted from the r.h.s. o4 Eq. (3-10), and added to the
r.h.sPof Iq. (3-11k the terms u* u* Ii dnd w*' C*(T*-T*) - 1/2u*2Ju ,p -ýý s F p p
•p C*(T* - T*) + P Jmust be subtracted from the r.h.s. of Eq. (3-13).p-s F p 2
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where C* and C* are the heat capacities of the gas and solid,
p s

respectively, and Q* represents the volur, ýtric rate of heat transfer
p

between the particles and gas.

m*C* Q*C*(T*-T
Q*p* C* (T*. -T-'')/(- 2 -P' R0 P (3-14)

p p p p \~2NuTTro*k T

where k* is the gas thermal conductivity, Nu is Nusselt number and m* is

the mass of a particle,

m* = Ao*3 P* (3-15)

3m

The parameter .r = (m*C*)/(2NuaT*k*) is the thermal relaxation time
T p

constant, i.e., T* is the characteristic time it takes the par.ticles to adjust

to the local gas temperature. The Nusselt number is a function of Reynolds

number and Prandtl number. The following expression suggested by
¶ (64)Carlson is used:

Nu = 2 + .459 Re'Pr'" 3 3  (3-16)

Here again, the second term represents a correction to the Stokes flow

value, i.e., Nu =2. The gaseons equation of state is also required and is

P* ýD*RT* (3-17)

3.3 Nondimensional Equations

In an effort to improve the accuracy and reduce the possibility of round-

off error in the solution, the independent and dependent variables have been

normalized. The resulting normalized (nondinmnsional) variables are more

uniform in magnitude. The following new variables have, therefore, been
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defined:

x = x*/L T = T*/T* A = A*/L* 2

t = t'a'F/L* P = P*/P* w = Wu*L*/p *a{

u= */a* P =P*/P* Wp = w*p~
F F= F F*/ (3-18)

P /p =PF T */T* F*L*/p*a*2

ppp F p pF Fp p F F

= =u*/a* C*/C* Qp *L*/*C*a*
p F s p p F p FT

a = a*la*
F

where T* is the propellant adiabatic flame temperature, P* is chamber

pressure, p* and a* are the density and sound speed evaluated at the chamber

conditions and L* is a reference length, usually the length of the grain.

In terms of these nondimensional variables equations (3-2), (3-3),

(3-10 to 13) and (3-17) become:

Continuity

-(pA) + - (puA) = wA (3-i9)Bt a

-(pA) + - a (ppupA) = wA (3-20)

at p ax p

Momentum

P --+pu -Uuw - bP +F (3-21)
a t a x Y x p

p =P w U -F (3-22)
p at ppUp x p p p
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Energy

T- + T Y- F E ) +LAP-- +w (I-T) + 2 U 2a 't a u x Y A t Uax - j

(3-23)
+ (-l)Fp(up-u) + Q

+ p - (l -T) + (. ) I- -L: (3-24)

State

P = P T (3-25)

The nondlmensional sound speed, a = a*/a*, is given by,

a = U - (3-26)

3.4 Characteristic Equations

The equations of the characteristic lines, and their corresponding

compatibility rclations, can now be developed as follows: p = P/T is

substituted into equation (3-19) and the resulting temperature derivatives
are eliminated using the energy equation (3-23), this yields

I P P p6u a A uP (ýA+ + 1 1 W 2

)t + x J -P x YA 8t A 2x

(3-27)

+ ( - 1)F (Up-U) + Qp
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The momentum equation (3-21) is then multiplied by an unknown
multiplier, q, and added to equation (3-27), this gives

1La +(u +q) -j +pq u + pqu + LI aA
Latyx A at

(3-28)

uP A +w(luq)+ 2 P2
- +x w (Iu +q +Fa21pL(V- 1)Up- u) + qj + Q p

If the total derivatives of pressure and velocity are to be the same
then the condition

p_ q2 P
q or q= - (3-29)

must be satisfied. Since a2 = P/ , this condition leads to

q = + a (3-30)

if 6 + (u+a) and = + (u -a) (3-31)6 t 7t ax6t a t a

are defined as the total derivatives along the characteristics lines given by

dx
dt u (3-32)

then equation (3-28) with (3-30) yields the following compatiblity relations:

1 6+P + 6u 1 - A 1 6A1 L(I F(1ua)+'Y- u 2
Yoa Tt + T t •L .. 2 ,u

(3-33)

oa-9p j



I;

1 6-P 6-u ap A A _u2¥--oa~~~ Ut 6 -A v• + (1 (+ua) +
•o IT Tt Yat 6x oa 2.

Fn • Q.,(3-34)

+ -a (Y- l) (U - u) -a_ + -'3o

The gas energy equation (3-23) is already in characteristic form.

The gas streamlines

dx
(3-35)

dt

are characteristic lines, and if

Tt -A ý

is defines as the total derivative along the streamlines, then

the energy equation becomes the compatibility relation, and may be written

as

6T 1 51P (_ -j1) E -A + - 1 2-1
S6 t •. Y A t + (1T)+ 2 U

(3-37)
+ (v-l) F (U -U) + Q

A particle path,

dx U (3-38)

is a dual characteristic. Defining,

+p u --- 9
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as the total derivative along a particle path, allows the particle momentum

and energy equations (3-22) and (3-24) to be written as

t u p Fp (3-40)
Op 6t p

I OT = Wp(1 -Tp) + (3-41)

Sp 6t p p 2 C p C

The particle continuity equation (3-20) becomes uncoupled from the

remaining equations (since there is no particle equation of state which

relates particle dansity to particle temperature) and cannot be written in

characteristic form. It can, however, be written in the following alternatIve

form

ao u o6AP P + w 0 = Wp - -P(3-42)
6t p x P A 6t

The required equations of motion are, therefore: the equations of the four

characteristic lines, equations (3-32), (3-35), (3-38); the five

compatibility relations, equations (3-33), (3-34), (3-37), (3-40), (3-41);

and the particle continuity equation (3-42). These equations, together with

the equation of state, (3-25), the transient burning rate analysis (Section 4),

boundary conditions (Section 5), and initial conditions (Section 6), form the

complete mathematical model of the instability problem.
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4.0 RESPONSE FUNCTION FOR TRANSIENT BURNING

In general one must expect that the combustion processes will respond

to both pressure and velocity fluctuations. Moreover, although this has

not been established experimentally, the response may be nonlinear in

addition to the intrinsic dependence on the magnitude of velocity fluctuations

mentioned in Section 2 . 3. Other than a numerical calculation of the

response to an exponential change of pressure (Ref. 58), there have been

three treatments of the nonlinear response to pressure coupling (Refs. 55,56,

57). All are restricted to harmonic motions, and seek to obtain nonlinear

heat conduction solutions. There are open questions, however, about the

validity of these analyses. The present treatment is based on a linear

solution for the heat conduction in the solid, coupled to a nonlinear solution

of the chamber flow dynamics. This approach seems to be Justified based on

observation of data.

The method for calculating both the pressure coupled (Section 4.2) and
velocity coupled (Section 4.3) response to disturbances of arbitrary waveform

is essentially an extension of the analysis of the response to harmonic

oscillations. Therefore, a summary of the harmonic analysis is included here

to clarify the origin of the parameters required in the numerical analysis. The

influence of aluminum is not explicitly accounted for.

4.1 Linear Response To Harmonic Pressure Oscillations

It has been shown (Ref. 59) that almost all existing analyses of the

response of a burning solid to harmonic pressure fluctuations lead to

essentially the same functional dependence on frequency. The reason,
logically enough, is that all are based on the same assumptions, namely:

(1) The gas and solid phases are treated as homogeneous

phases, and only variations in the direction normal to the

burning surface are accot nted for.

(2) Conversion of solid to ga:; occurs at an infinitesimally thin

interface; in particular, no chemical reactions are present

in the solid.

(3) The gas phase responds quasi-statically so that only the

steady-state solution is required. This assumption is

Justified by the fact that processes in the gas phase
are much faster than those in the solid.
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The analysis is then conveniently split into three parts: the

solid, the gas, and the interface.

4.1.1 Solid Phase

A coordinate system fixed to the gas/solid interface is used. With

the approximations listed above, and assuming also that the material
properties are constant, the problem reduces to the heat conduction

equation,

2CT 6T ' (4-1)s s t + °SGs• T ks ,x 2

The equation is linearized by writing T = T + T', r =_r + r'; the steady-
state and fluctuating temperatures satisfy

- d2
T (4-2)

Ss dx s d42
dx2

s s + G C" = ks-A T - rs (4-3)
s ssX s X 2 s dx

From (4-2), with the conditions

T=T (x- c

T= T (x= 0) (4-4)
w

one finds

T-Ts (4-5)
= e s

Tw -Ts

where

4 -2 (4-6)
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It is sufficient for linear problems to examine the case of harmonic time
variations. The solution to Eq. (4-3), yields the formula for fluctuations
of heat transfer from the interface into the solid,

T whrema -
[k5 all (;cFx, +Yw

where mý =Psr' is the fluctuation of mass flux, Tw is the fluctuation of

surface temperature, and X is the complex function of frequency:

X1 1/ 1+ -l+1 2 1/2 (4-8)

s (4-9)-2r

where w is angular frequency of the waves.

It is common practice to assume that a simple pyrolysis law of the
Arrhenius form applies:

n -E/RoT
mw=Bpw P (4-10)

Thus, the fluctuations of mass flux and surface temperature are related by

m ,' T o-=v = E --w + nwp
m w P (4-11)

with the normalized activation energy for the surface reaction

EE A/Ro0 Tw - (4-12)

Equations (4-7) and (4-11)may be combined to yield the desired result,

r I rTl IRL sTwp~ (4-13)
L 65  [XJ + A]T
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where the important parameter A is defined as:

TA-w" E (4-14)

Tw

4.1.2 Interface

By examining conservation of mass and energy for a control volume

encompassing the interface, one finds the general "jump" conditions

o r = p ug (4-15)

s -
rh - [ks U =pgughw+ Ig ax (4-16)

in which the enthalpies on the solid and gas sides of the interface are hw_
h w, respectively. The heat of reaction associated with the processes at

the interface is Qw

Qw = hw- - hw+ (4-17)

and Q > 0 for an exothermic reaction.

The perturbation of (4-16) is

[g a-T += k f +mP-W m'Q(18

and with (4-13), one has

0CT ax T'

T (4-19)+ nw[l - ] H -'

Tw P

4.-4



where

H = Q(4-20)

S w S

4.1.3 Gas Phase

This is the most difficult part of the problem if one wishes to cope

with the details of the flbme. However, it turns out that, owing to the

assumption of quasi-static behavior, no matter what model one selects for
the flame structure, the ultimate form of the response functions will be the

same. For simplicity, the most elementary model will be discussed.

The energy equation for a thermal theory of flame propagation is

Cp d-x =dxkg d~x' +Qfw (4-21)

where Qf is the heat release per unit mass, and w is the reaction rate

(sec- ) divided by the gas density. This equation must be solved subject

to the conditions

[kg d- m [Cs(T -T Qw (4-22)

at the surface (x 0), and

T f (4-23)

dT -

dx

at the downstream edge of the flame (x -+ c).

Now suppose that the energy release is uniform in the region from the

surface to the edge of the flame (x = xf) so Qfw is constant. This case has

been treated in References 58 and 59. Equation (4-21) can then be integrated

directly (note that m = pg Ug is constant) to give the formula for the heat
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transfer to the surface

[kgd--'T+ =Qfcp 1-exp(- mCpXf/kg)] (4-24)

It happens that for typical values of the quantities involved, the exponential

Involving xf is negligible:

mC psr = Ck..._

k xf k Cp xf x-;k f

g g sg -s

; (1) l( cm/sec) xf(10.3 cm/sec)f

S1000 Xf

Even if xf is as unrealistically small as 20 microns, 1000 xf = 2; hence the

approximation is quite good, and (4-24) becomes

[ L'T~ ~ Qk (4-25)Sc m
p

The pertu-bation of the last equation is

g- • --• *.. w' I

[ C 2 , - - (4-26)

where

2 f= - (4-27)(m Cp2w
p

It remains only to find an expression for w, and, hence, wI.
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Suppose that the reactions are mainly sensitive to changes of pressure,
so w p'. It is convenient to define Wby

¶pr A2

C2s L1  /Yw p (4-28)

With this assumption, (4-26) becomes

L ag d T -. C TP C ( 4 -2 9•+: m T• (,--•-)w 4: _ -P A 2 23 (-29)
W

which is the result required of the solution for the gas phase.

4.1.4 Linear Response Function and Fluctuations of the Flame
Tempera ture

Equations (4-11), (4-19), and (4-29)can be combined to yield the ratio
+ C

/ (AW+ n) +nw(X-1)

m / C __A_2 C_ (4 -30)+ +S EA _HA2 - P+ _
xC C

In the limit of zero frequency, X -# 1 and (4-29)must reproduce the
smallchange of burning rate due to a small change of pressure in steady
state burning. For the common case r pn, this implies that the ratio
(4-30)must equal n for w -* 0; i.e.,

C.C C nnpAA(l-H) + Cs. E + = AFw+ - (4-31)C+s Cs

Define the parameter B as

• C nw
B W +--P (4-32)
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and the condition (4-31) is

2 C

EA2 -HA+ C 1-- (A+l) =AB (4-33)

Hence, (4-30) has the simpler form

# nAB +n (X-l)
X + -(1 A A

(Incidentally, with a bit of effort, one can show that (4-33) implies

satisfaction of the mean energy balance at the gas/solid interface written

in a slightly obscure form).

Equation (4-34) is proportional to the response function, Rb, usually

defined as

Rb = p : m m (4-35)

A second quantity, the admittance function, is also important in studies

of instability. This is defined as

u'/a U'/uAb -:b M (4-36)

Now from the definition of m = p u*

m' =U
m u

or

Mb R b=A b+ - Mb (4-37)

*Note that owing to the way in which the mass flux is used here, the assump-
tion is implicit that the propellant contains no metal. When applied to metal-
lized propellants, m and m' must theýn be the values for the gases only.
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With the perfect gas law, (4-37) can be written

RTb=MbAb+y p /Y,7 (4-38)

Here T' is really Tfi which can be written as the sum of an isentropic

part and a nonisentropic part:

f + f ~ P-. (4-39)

Tf Tf isent. f )non-isent. Y P Tf

Thus, (4-38) becomes

Rb -1 MbAb - (4-40)

The last result is generally true for linear variations. With the

analysis leading to (4-34) one can deduce an explicit expression for ATi and

hence for the admittance f, nction. Consider first a control volume extending

from the solid/gas interface downstream beyond the combustion zone; the

energy balance for this region is

;[ kgdx dT (hW+ hf I[Q f-Cp(Tf-TW)1 (4-41)

where Qf is again the energy released, per unit mass of flow, by chemical

reactions. The perturb, -ri of (4-41) is

T'=V +1 f_ dT-

mLC (Tf-Tw)j-1ThC LgaJ+
p

V+--[ - !- W - (4-42)IwL C w~.Smm y p
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The mean energy balance for a control volume extending from deep within

the solid to a plane on the gas side of the interface is

With (4-41), one has the identity for use in (4-42):

Qf - Cp (T-TW)=Cs(YV -T) Q (4-44)

Also, combination of (4-25), written for steady burning, and (4-43) gives

a formula for A2 :

CP EA2 = A(I - H) (4-45)
C

S

Now after the Airhenius law (4-11) is used to eliminate Tfrom (4-42),

and Equations (4-43) and (4-45) are substituted appropriately, the result is

i ~ To Tw r T_ 2 Am -C

-f w--A m -n- T BARC F (4-46)

L E 2Cp E I-H) m T J E p

The bracketed terms multiplying m'/m can be rewritten, using (4-33) and

(4-45) as

nA B (4-47)Fjz A(I - HIJ -L _+ _ E C

and with (4-35), one now has

J..- =Cs T wl n '-- a -- - I- b -1) (4-48)
T- Cp E -y n b

To find the nonisentropic part of (4-48), write T/Tf as in (4-39), and

the last equation produces

-n s w ABS - 1_- (4-49)
T f - TI
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Frcom the d1'flnitions of Rb and Ab, this can also be written as

- A b (4-50)
SL=- - (b1f b

This completes the elementary linear analysis for harmonic motions.

The fluctuations m', Tf, etc., are of course complex amplitudes with phases

measured with respect to the pressure oscillation. It should be noted that
(4-50) is a general result, whereas (4-49) involves the assumptions listed at

the beginning of this discussion.

Although the flame temperature must in principle oscillate according

to the preceding result, this behavior is not currently included in the numerical

analysis. There is no !eason why it cannot be incorporated, and, in fact,

variable flame temperature will be added to .the model as soon as possible.

In the meantime, the exclusion of this effect should not affect the immediate

task of assessing the possible value of the current approach to solid rocket

instability.

4.2 Linear Response to an Arbitrary ChanQe of Pressure

The response function, Equation (4-34), has been derived as the

sensitivity to harmonic oscillations. However, simply by taking io as the

ve:iable, (4-34) can be treated as a Laplace transform. Henceforth, the

influence of surface reactions will be ignored (nw = 0) so with s = i Q,

S(S)= mX(s) (s) (4-51)
AB Ms) X 2(s) + (AB-A-I) X(s) +A

Note that s = il /Ir" is the dimensionless Laplace transform variable as

associated with the dimensionless real time t,

= r (4-52)

4-11



Thus, for any function f(t) having transform F(s),

F(s) = 5f(t) e' dt (4-53)

0

1f() = # 5F(s) est ds (4-54)

Now define a new Laplace transform variable p,

p =1 + 4s (4-55)

so that the quantity X is

2[I +-t-- 4 + (4-56)

Substitute (4-55) into the Laplace transform pair (4-53) and (4-54) to find

F(p) = 4e"•f(,)je-p' dT (4-57)

0

[4eT 1f(T) 5 F(p) e PT dp (4-58)

where

4"rx (4-59)

Hence, what appears now is 4eT times the desired function of time, not the
i function itselt.

The inverse transform of (4-51) gives m'/ m as a function of t:

I X(s) s)est ds (4-60)

LX+(AB-A-1)X+Aj 'P

4-12
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and if the substitutions t -T .r, s -4 p are made,

=AB-4e" •-'() = e (T) J-•_ 1) -- 2 LeP'dP (4-61)

where a], a2 are the roots of the denominator,

1 -A(B- 1) + i N/4A-(AB-A- 1)2  (4-62a)

a 0 = a2 -A(B-l) - i'J4A- (AB-A-l)8 (4-62b)

Thus, aIl a2 are complex conjugates.

In principle, (4-61) can be used for numerical calculations. For by

use of the convolution theorem, if p'/p(T) is the inverse transform of

p'/ p(p) and K (r) is the inverse of the remainder of the integrand, then

formally

Sm' -

1 [4 - (T) = 4e-K(E) 4eT-- )
2nAB J (S ~ T~

0

or

m' S K (T dý (4-63)
0

Note that the factor 4e must be carried along according to earlier remarks.
Unfortunately, the function K( ) turns out to be extremely awkward

to handle numerically. It contains terms involving complex error functions

and exponentials such as e ( erfc (aif-T) . This combination can

be shown to be equivalent to the W(z) function defined on page 297of

Reference 70.
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Several different series representations may be used to represent
the above term. Each series, however, is either convergent in only part
of the complex plane, or if convergent everywhere, is only very slowly
convergent in part of the range of interest. It turns out, therefore, that
even by using different series with overlapping regions of convergence
there are parts of the complex plane of interest where many terms have to

be taken in the series.

Since, in an instability solution, the burning rate integral must be
carried out from 0 to the current time at each of many x locations, every time;
the computation time involved in evaluating the integrand becomes prohibitive
when the series are so slowly convergent. The fact that complex arithmetic
must be used further serves to amplify the problem.

The numerical difficulties of the direct approach can be avoided by
use of an alternate procedure. If (4-51) ts written in terms of P, using
(4-56) and (4-62), equation (4-51) oen be written in terms of P as,

I cy+0 'a1GLP_ -L 2 pP .. (.p +- p (4-64)

Now take the inverse transform to find

m' F) e ia e'-- -

0 0
(4-65)

T T

0 0

Although this is not an explicit formula for m'/ m, the functions under the
integrals are easy to handle numerically.

Equation (4-65) does present a problem at the lower limit of the integral,
- 0, since the integrand becomes infinite. This singularity can be handled

by dividing the integral into two pieces, and approximating the part near • =0.
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Thus,

! f(T-g)e'-d.-- 0 f(,r-ge-9-Af + 5f(,r -)e-9 -L (4-66)

where 6 4 0. If only the first two terms in a Taylor's series expansion are

retained, the first integral has the following value:
88 8

f f(Tr- e-•- f (T) e' -d.•. -df e- •dý

0 0 0
(4-67)

f(T) - 92 3/21 df r2 3/2 25 5/2'1

i[iý6 -6 3 dT LT 5-

where powers of 6 greater than 3/2 have been ignored.

All the integrals in (4-650 can be treated in this way, and after some

rearrangement, the final result used in the numerical calculation is

(I" [I- +-- (2 4 T - 2 63/2) + af02

m _¶(L)1 'OlAfoe

T- 8
' 1 1 +2 1 e-(r-

I ______I I~2 e d
+ TVB (rL) , 010(2g )

0

+ 2nAB S !- f + 11e-(T- ) d Fý (4-68)

The aua ft mla achecked2by 1anAngseer special

cases which can be worked out exactly (see Appendix A).
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The result (4-68)contains, in addition to the pressure index n, two

parameters, A and B. Over rather broad ranges, they can be chosen

independently. Previous experience has shown that A is probably in the

range 5 <A<50 while B< 1. This constraint on B assures (see Ref. 60)

that heat conduction to the solid from the gas is positive. However, A and

B cannot be set entirely independently for the following reason. Both (4-61)

and (4-68) produce a response, m'/ m, which consists of transient oscillations

and a long-time "steady-state" behavior. It is necessary, for acceptable

solutions, that the transients decay. This condition is met if and only if
(59)A and B satisfy the inequality

B+1 (4-69)

One would like to choose A and B to match the dynamical behavior

of the particular propellant used. In principle, data taken in T-burners,

for example, should provide adequate basis. However, the available

experimental results are limited. Hence one is forced to make crude

estimates. One aid in this respect is the result (59) that the response

to harmonic oscillations exhibits a peak occurring approximately at the value

of dimensionless frequency, -,

Q pe-k ' AV B (4-70)

4.3 Velocity Coupled Response

At the present time, the probelm of velocity coupling is unsolved.

There is little question that the burning of a propellant will respond to

disturbances of the velocity parallel to the surface. For steady-state

burning this Is called erosivity. One simple and commonly used represen-

tation of this effect is the modified form of the formula for the burning rate

given by (3-5). Under unsteady conditions, visual observations, particularly

of metallized propellants, suggest that the behavior is likely to much more

complicated. Consequently, the siniple response function based on un-
steady heat conduction in the solid is probably not an accurate representation

of the behavior. Additional time lags associated with processes at the

interface between the solid and the gas, and possibly in the gas phase itself,

are probably important.
4-16



Unfortunately, no quantietive information about those processes is

available. For the purposes here, then, a very simplified approach is taken.

It Is assumed that the transient behavior is due solely to the unsteady thermal

conduction in the solid phase. While this approximation may not adequately

mo' el the total response of real propellants, there is little ,eason to doubt

that the thermal wave must be present in any case. An assessment of the
importance of the thermal wave response relative to the complete velocity

coupled response of a propellant must await further study.

This does not mean that the response to velocity coupling will be either

qualitatively or quantitatively similar to that for pressure coupling. The reason

for this is that velocity coupling is intrinsically non-linear, a point which has

been emphasized in Refs. 27-31. This non-linearity arises because the burn-

ing is sensitive to the magnitude but not the direction of the velocity parallel

to the surface. It is therefore independent of details of the physical processes

and is always present. This is essentially the only feature peculiar to velocity

coupling which has been discussed quantitatively in the literature. In the pre-

sent work, the intent is to obtain numerical results for comparison with results

obtained for pressure coupling. The latter is ot course treated here as a purely

linear phenomenon.

In view of the above remarks, and with appeal to the discussions of

Refs. 27-31, the response of the mass flux to transient disturbances of velocity

parallel to the surface is written, by analogy with the result (4-34) for pressure

coupling, as

SnvABv
f-1 fl { 1(I-ut) (4-71)utm +-A - (1+A)+ABv

Here ut is the threshold velocity. If has been introduced in previous

work as a result of experimental observations on steady burning which

have shown that the effect of erosion on the burning rate appears In some

cases to be absent unless the parallel velocity u is larger than some

value ut. The quantities cI and e2 are defined as follows:
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{= 0 l{jul1 = • i lu I> ut, ( -2

2 1{ Ju~
The subscript ()v on n and B is used to indicate that the values of these

parameters may differ from those for pressure coupling. In the limit w-+o - i.e.

a step change of u is imposed - Equation (4-71) becomes

Tm = nc 6 (Ju - ut) (4-73)

The change of course, is all in lul; ut is held constant. If the threshold velocity

is introduced in (3-5), the linearized form gives

6r - 8m n 6P. + 0 k 6(tuI-ut) (4-74)

r m p l+C*(Iui-ut)

Comparison of (4-73) and (4-74) shows that the correct limit is obtained only if

the parameter n is given byv C
knv = (4-75)1 + C. (lul1 - q

It obvious that for velocity coupling alone, the formula (4-68) can be used

to compute the transient mass flux, but with n replaced by nv, B by Bv and

by e (0u I - u) - 2 (I - ut).

When pressure and velocity coupling are accounted for simultaneously, and

they are assumed to be additive, the tran3form of the mass flux is given by

ml nAB p I nv AB
___AB p, n+ A - f f (lu I-ut) - 62 (7-ut) }

m =AA) + AB (I+A) + AB+v (4-76)

The total transient burning response can then be calculated as

m m m

where (-!-') , the pressure coupled response, is calculated from equation (4-68),,m'm n'

and ý'V; the velocity coupled response is similarly calculated by making the

propeP'substitutions (indicated previously) in equation (4-68).
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5. BOUNDARY CONDITIONS

5.1 HeadEnd-x=O

The boundary conditions at x 0 assume the head end is riqid. The

boundary condition for the gas phase is then,

x = 0 u=O (5-1)

The "correct" boundary condition for the particles at the head end

would have to allow for particles colliding with the wall. The collision

could be assumed to be completely elastic, inelastic, or anywhere in -

between. However, if particles were allowed to bounce off the wall,

there would clearly exist two classes of particles at locations near the

end wall; those that were appro-ching the wall, and those that had already

been reflected. The existence of particles having different velocities

at the same location is not compatible with the assumptions underlying

the two-phase flow analysis, as outlined in Section 3.1, and, hence,

cannot be accommodated in the present model. With this in mind the

particle boundary condition has been simply taken to be,

x = 0 up =0 (5-2)

This approximation should not seriously affect the overpal' solution.

5.2 End of the Grain - x = 1

The boundary condition at the end of the grain (x = 1, in the non-

dimensional coordinate system) is approximated as follows. In rocket motors

with short nozzles the convective derivatives, u-, are much larger than

the time derivatives, -- , in the flow field between the end of the grain and

the throat. A quasi-steady approximation for the flow in this region should,

therefore, be a reasonably good approximation.

While it is possible to obtain an "exact" one-dimensional two-phase
nozzle solution, (65)the 'fractional-lag" approximation(65,66) has been shown
to yield very good results, and is much simpler. The fractional lag
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analysis is based on the usual two phase flow assumptions (see Section

3.1), with one important difference. It is assumed that the particle

velocity and temperature are constant fractions of the gas velocity and

temperature, respectively.

S- T* 1-T.
-~ ~KT* T* I- 1T(-)=K , P = ----- = L (5-3)

g T* T* I-T
U F g g

It can then be shown that

L 1 + 3 Pr C (U-K)/Kr- (5-4)

where Pr is the gas Prandtl number and C is the ratio of particle to

gas specific heat.

The fractional lag assumption allows the one-dirmensional two-phase

equations of motion to be reduced to the one-dimensional isentropic

equations for a perfect gas with altered properties. If m = puA and

n~p = P pup A are the mass flow rates of the gas and particles, respectively,
at the end of the grain, then the fractional lag analysir yields the following

for the equivalent isentropic exponent, Y.

I 1 + (y- 1) (-5)

where,

I + .-• P K 2m

B= n (5-6)
1 +.t- CL

m

E =1 + -m - K[Y(I-Y +K] (Y-1) CLB+ (5-7)
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and the equivalent Mach number, M', is given by+

M = E1/2M (5-8)

The value of the lag parameter, K, must, in practice, be determined
iteratively. The following expression for K may be obtained(65)

- 2 1/2
2

where

9  -(Y +1)A tR 11/2 (-0iL M 1 L 2 T

and R is the nondimensional throat radius cf curvature, R = Rt/rt. In order

to find K from equation (5-9) 7 must be known. However, equation

(5-5) shows that K must be known to find y. The establishment of

compatible K and y values requires iteration.

Once the values of K and Y have been established the Mach number

at the end of the grain is then found by solving the usual isentropic equation

for Mach number as a function of area ratio.

[A*] = 42LV-f'l+ 2 (5-11)

e

+The Machinub of the yelentpe choking conditiony i.e.
the factinal la nye "equivalent" perfect gas is unityiao, e physical1
throat. The actual gas Mach number does not reach unity until some
point downstream of the throat.
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The actual gas Mach number at the end of the grain is then

M ue E- 1/2 i (5-12)
e a e

The boundary condition at x = 1 is then, that the gas Mach number

be equal to that given by equation (5-12). This matching condition assures

that the flow will properly choke at the throat (at least within the confines

of the present assumptions of one-dimensional quasi-steady nozzle flow

with constant fractional lag). The treatment of the nozzle flow and boundary

condition at the end of the grain, as presented, is a simplified and

approximate one; but one which should give a fair representation of the

actual flow. If, after further study, it can be deduced that a more accurate

treatment of the nozzle is required, it will not be inordinately difficult to

do so.
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6. INITIAL CONDITIONS--STEADY STATE SOLUTION

In order to initiate the method of characteristics instability solution,

the steady state equations of motion must be solved. The initial condi-

tions are then generated by adding a perturbation to the steady state

i solution.

6.1 Steady State Equations in Conservative Form

The steady state two-phase analysis assumes that the mass added to

the chamber (from propellant burning) is at constant enthalpy and has no

axial momentum. The rate of particle mass addition is taken to be a constant

fraction of the gas phase mass addition rate. In addition., the typical two-

phase flow assumptions are made, i.e., the particles are spheres of a

single size with uniform internal temperature, the particles do not interact

with each other and are of negligible volume, etc. With these assumptions

the steady state equations may be obtained from the time dependent

equations (Section 3.2) by removing the time derivatives. The gas phase

equations become:

1 C Continuity: d P*u*A*) = I*A* (6-1)

Momentum: d A dP* + F A* (6-2)
dA(%•2* - 2 +x +* 1A-2

Energy: dd u* (CpT + 1/2 u*2)A* t = C T*+F*pU*pU*•* + Q*A* -

(6-3)

State: P*= p*RT* (6-4)

65
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Many -Limes It is advan'tageous to work with the equations of motion
in conservative form. Equations (6-1) and (6-3) are already in conservative
form and equation (6-2) may be written in this form as

d 0* * + p*u', 2 W' F*A* + P* d (6-S)
Sdx* 

-

The particle equations are already in conservative form and are:

Continuity: d_ (p* u* Al = W* A* (G-6)dx* p 
-

Momentum: d (0p* U*2 A*) = - F* A* (6-7)PP pd (6-8)
Energy: d u*(C*T* + 1 u*2 )A*" = T* - Q* A*F*u* A* (6-8)

Eeg*•_p p s p 2p p F p p p

6.2 Nondimensional Equations

Using the definitions presented earlier in Section 3.3, the steady state
equations can be written in the following nondimensional form (Note: pressurehas been eliminated from equation (6-2) using the equation of state (6-4).

d'ý (,,uA) - ,
dx 

(6-9)
•"d (0p u A) Adx =wA 

(6-10)dx PP p
4 pA (T + yu 2 ) = 'AF + (PT) dA
-AT+p dx (611)

d (P u 2 A) -AF (6-12)dx- pp p (-2

dpuA T+ .1- u -+)F (U -u 1) FNU)•u - 2 Q u + (¥ + QA (6-13)

6-2



Equations (6-9 to 14) represent six simultaneous first order differential

equations which can be conveniently integrated, since they are of the form

dfi

dx -g1  (i=1 ... 6) (6-15)

where

ouA fl
Ppp p 2

PA(T + u2) f
2 3 (6-16)

ouA f

PppU pA[C T p + (Y u'] f6

I~~ LLUCT+Y 6_
and

U"gl
SpA 92

YAF +pTT dA

g P dx- AFpg4(-1)

(w[¢+ (y-1)Fp (Up-U) + QpA (617

p pp p9[ pC -('-1)F U- Q]A
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Equations (6-9 to 14) in the form of (6-15) are integrated using an Adams-

Moulton integration routine. At each step the solution yields new values

for the f's (6-16), and the flow variables themselves must then be calcu-

lated so the g's (6-17) can be reevaluated, and the integration continued.

With the fi known the flow variables may be calculated as follows:

f4
P f?

q

pp= 
Af4

T L6 YL-1 f4 2-.

(6-18)

U f fl fJ /

f5

"f 2 U

II 0 f _

uA

*The steady state equations are integrated from x = 0 to x = 1,

(the end of the grain) where the gas Mach number must be matched to that

* of the nozzle solution to insure the choked flow condition is satisfied.

As discussed in Section 5.2, the fractional lag two phase nozzle

solution establishes the Mach number at the end of the grain, Me, once

the nozzle radius of curvature chamber to throat area ratio, chamber

temperature and particle to gas weight flow ratio have been selected.
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Successive solutions with varying values of chamber pressure, PF are

then carried out until the value of Me predicted by the steady state chamber

solution matches the value set by the fractional lag solution. In other

words, varying the chamber pressure varies the amount of mass addition

into the chamber through the pressure dependence of the solid propellant

burning rate until the mass flow required to choke the nozzle is achieved.

6-5
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7. NUMERICAL SOLUTION

The longitudinal combustion instability model developed in the previous

sections has led to a set of nonlinear partial differential equations, which

are coupled to the integral equation for the transient burning response. In
general, closed form sol :tions to this set of equations cannot be obtained

without resort to further approximation. Therefore, numerical techniques

have been employed in order to obtain instability solutions without additional

simplification of the model.

The numerical solution of the total problem is made up of several

distinct elements; the characteristics equations, transient burning rate

equation, and steady state equations. Each of these is individually

discussed, in turn, in the remainder of this section.

7.1 Method of Characteristics

The one dimensional unsteady equations of motion are hyperbolic, and,

therefore, are amenable to solution via the method of characteristics. The

method of characteristics is itself, in the broad sense, a standard numerical

method, however, the details of its application to a particular problem can,

"and do. vary over a considerable range. Each application, and set of

equations, is subject to its own little innuendos, which should be taken into

account in the formulation of a finite difference analog to the equations. The

modified Euler method is the one most frequently employed in method of

characteristic solutions. Prior experience with problems of the present type,

however, indicates that it is preferable to handle the streamline characteristics

in an implicit manner. This allows larger step sizes to be used, and higher

gradients can be tolerated without deleterious effects.

The actual solution of the present problem consists of the repeated

application of three types of calculations:

1. Field Points

2. Right Boundary Points

j.. Left Boundary Points

Each of these calculations is described, in detail, below.
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7.1.1 Field Points

A field point is created by the intersection of left running and right

running characteristic lines. By definition, it cannot lie on one of the

boundaries, since at: , `oundary one of the characteristic families is absent.

Figure 7-1 shows how the finite difference mesh for a field point is created.

Although higher order methods, involving more points, can, and have, been

used, the usual characterisitc mesh, as shown, utilizes information at two
adjacent points to solve for the flow variables at a third point, more advanced

in time. Here, it is assumed that all required information is known at
points l and 2, and the solution at point 3 is to be sought.

t

3

E%

45
2

x

Figure 7-1. Field Point Calcuiation
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In the present scheme, the solution is begun by assigning the flow

variables at point 3 values equal to the average of their values at points 1

and 2. Using equation (3-32) for the directions of the characteristic lines,

the location of point 3 yields,

C+tl- c-t2 + x2x 1 (7-1)t3= c+ c" 7I

S= xI + c+(t3 - t1 ) (7-2)

where the average slopes of the characteristic lines are (the plus and

minus signs are used to denote right and left running chazacteristics,

respectively),

S+ =(u + a 1) + (u3 + a 3)1/2

c- = [(uI -a 1 ) + (u3 - a 3)]/2

Average values of u, p, T, Lo , a, etc., along each of the characteristics,

are then defined, e.g.,

u+ = (u 1 +u 3 )/2

This enables the compatibility relations, equations (3-33) and (3-34) to

be written as

G+ (P3 - P) (u3 -U) (75)
(t3 -t) + (t 3 - t1) RHS

(P3 - P 2 ) (u 3 - u 2 )
___-__G- - RHS (7-6)
(t 3 - t2 ) (t 3 - t2 )
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where RHS+ and RHS are the right hand sides of equations (3-33) and

(3-34), respectively, evaluated in terms of the corresponding average

values of the variables, e.g.,

+ + - +F[RHS+ A ' L + u xlx+,t+i +9-•[l-u+a+)

(7-7)

(Yl) u2 F+ Qa j+
2 + o+. - 1 )(++ )

and

G+= (y p+a+)-I
(7-8)

G- = ( -a-)-i

Equations (7-5) and (7-6) are easily solved to yield the pressure

and velocity at point 3

G+PI + G- P2 + uI - u 2 + RHS+ At+ + RHS-At-
P3 G+G (7-9)

u3 = uL -G+(P 3 -PI) + RHS+ t+ (7-10)

Since the burning rate w, is only pressure and/or velocity dependent,

its value at point 3 could now be calculated, in principle. In practice,

the complexity of the transient burning rate analysis precludes it, from

an economic standpoint. The burning rate analysis is used to calculate

w only after the completion of all the characteristics calculations for

two or more time levels. When burning rate values are calculated at

other times, they are done so by simple first order extrapolation from

previous results.
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The temperature at point 3 is found by utilizing the compatibility

relation (equation (3-37)), along the gas streamline, dx/dt = u, (shown
as line segment 3- in Figure 7-1). The intersection of the gas streamline

passing through point 3 and the line segment joining points 1 and 2, shown

as point 4, is not known, a priori, and must be located. The slope of the

streamline is taken to be the average of u3 and u4 , hence, the location of

point 4 is found to be

(t 2 - tl) x3 3 (t 2 - td)
It3~flx (x -x1  - .5(u +U4 )J L(x -x) .5(U +u 4 )

24 1
(7.-1l)

t4 =t 3 + (X4u3 +u4) '7-12)

All of the flow variables at point 4 may now be evaluated by lineraly inter-

polating between points 1 and 2. Average quantities, denoted by a (-, are

defined based on the values at points 3 and 4. As mentioned earlier, the

solution of the streamline characteristics is carried out "implicitly". Here the

term "implicit" is used to denote the fact that the temperature derivative in

equation (3-37) is not evaluated strictly in terms of known quantities. Rather,
the temperature on the right hand side is approx-rna ted as (T3 (the current

unknown)+T 4 )/2. This has the effect of couplirg the value of the derivative

to the value of the variable, itself, and helps t; pi•v ent wild over or under-
prediction. In the manner discussed above, t0e K:.t:n for T3 is found to be

T@[- (t 3 -t 4)JT 4 + Y. - P43 - (T3 P +÷.5 @ (t3 - t4) (-3

*On the first iteration, u is set equal to (u 1 +u 2)/2; a good approximation
when the velocity is smaA.
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.5, 5 . , 2

where RHS is defined as

(7-14)

The sound speed can then be found as

a 3 =Af3 (7-15)

and the equation of state yields

P3
03 T-3  (7-16)

The particle velocity and temperature at point 3 are found from the

particle pathline characteristic (equation (3-38)) and its dual compatibility

relations (equations (3-40) and (3-41)) in a manner essentially identical to

the solution for T3 . In this case, the intersection of the particle pathline

through point 3 and 1-2 , shown as point 5, is located. Values at point 5

are established by interpolation and averages of the variables at 5 and 3

are defined (denoted by a subscript av). The solutions for u and T were

also done "implicitly." P3 P3

The equations for x5 and t 5 may be obtained by simply changing all the

4's to 5's in equations (7-11) and (7-1 2), and are not given here. The final

equations for up3 and TP3 are easily shown to be

u = Pav Up5 -( Pa uP5 +Fa)(t 3 -t 5 ) (7-17)
P3 PPav + ý•r Pav (t3 - t 5 )
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Su +U P52 Q

T Pay Pay t3t5 PS 3t5) av 2C0 2 C I
P3. ' p + * (t3Wt 5)

P3 av Pav

(7-18)

It will be recalled that lacking a state equation for the particles, the

equation for p cannot be put into characteristic form. The equation for
p*

p may be written as (see (3-42))

66D

6t6 a (7-18)

wherein the velocity derivative is treated as an ordir.ary variable, and is

placed on the right hand side. In the form shown, equation (7-18) is

analogous to the compatibility relations, equations (3-40) and (3-41), and

p may be found in the manner previously outlined for velocity and tempe-

ratre, provided a suitable approximation can be found for the velocity

derivativre.

ti tt
.• tI > t2 t2 > t I

3 3

6 2

2

Vx x

Figure 7-2. Calculation of Au /bx
p

*The area derivative term has been left out of the numerical analysis at this
point. If varying area solutions are sought in the future the solution for

i pp,, shown here, will have to be modified.
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au

A first order method for calculating - has been devised, as follows:
Depending on whether t2 > or < t 1 (see Figure 7-2) a new point, 6, is located;
along 2-3 at tl, iftI > t 2 , or along T-3 at t 2 , ift 2 >tI. The velocity at
point 6 is found by linear interpolation and is

(t- t2 )
Up6 Up2  ( (UP3 Up2 tI >t2

2 p 3  p2 (7-19)

(t2 - t1 )

Up6 P+ (t 3 t1 ) (p - up) t2 > t1

The location of point 6, itself, is given by

x6 x 2 +c(t 1 -t 2 ) t1 >t2

(7-20)x6 = x +c+ (t2-t) t2 > t

and the velocity derivative can then be approximated asK

au, up 6- up 1

(7-21)

t2 ->

6 u u P-u
__P = P

Ix x 2 - x 6  t2 1 tl

The density, P can now be found from equation (7-18),p 3

0 + r•pvP Ž (tx t
0  5 av 5 xa (7-22)
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At this point, all of the flow variables at point 3 have been found. The whole

procedure, from the locating of point 3, to the solution for p , is then

repeated until satisfactory convergence has been obtained. Re tests made

to determine whother further iteration is required are based upon the relative

change in a3 , P3 and PP3 from one iteration to the next. If

ali)_ a i- 0
3

I 3 (7-23)(1i) (1-1

P (i) _P41
p3  p 3  <P(1) 1

3
and

o (i) .-0 1

3 )P3 < C 2 (7-24)

P3

are all satisfied, the field point calculation is complete.

7.1.2 Right Hand Boundary

A right hand boundary point is created when a right running character-

istic reaches the boundary at the end of the grain, x = 1. Since any left

running characteristics passing through siuch a point would have to come from

outside the domain of interest the information carried by them is not available.

Without the compatibility relation on left running characteristics, one less

equation is available; this is compensated for by the right hand boundary

condition given by equation (5-12). This boundary condition fixes the Mach

number at the end of grain, such that the flo'A will choke at the throat in a

qua si-steady manner.
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The finite difference mesh and method of solution for a right hand

boundary point are quite similar to that of the field point.

t

x 3

"i~ 41b

55

2

x1 x

Figure 7-3. Right Hand Boundary Point Calculation

Again, points 1 and 2 are known, and the solution at point 3 is sought. In

this case, x3 1= , is known; and u 3 = Mea3 must be satisfie(i. Me is
known Loom the buundary condition, but a 3 is not known unti the energy

equation is solved to yield T3 . To begin the solution u 3 and all of the other
quantities at point 3 are se' equal to the value of the respective variables

at point 2. The location of point 3 )s fc.ind to be

x 3=

S(x3 -X1 ) (7-2S)
t3 --. tI + +
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where c+ is defined in equation (7-3). Proceding in a manner similar to

that shown, previously, for the field point, P3 is found from the compatibility

relation on the right running characteristic T7.

P3 = PI + [RhS+ (t3 -t1 ) - (u3-ul)]/G+ (7-26)

where RHS+ and G+ have been given by equations (7-7) and (7-8).

The calculation of T3, a 3 , 031 u , Tp , and Pp from the streamline

and particle pathlines follows, identicafy, tke proceddre outlined for the

field point solution. The only additional step is the calculation of u3 , from

the boundary condition, after T3 and, hence, a, , have been found.

7.1.3 Left Hand Boundary

A left hand boundary point is formed when a left running characteristic

intersects the wall, x = 0. Like the right hand boundary point calculation,

the relation lost through the nonexistence of one characteristic family (here

the right running family) is replaced by a boundary condition. In this case,

the boundary condition is u = 0 at x = 0. (See -quation (5-1)). As discussed in

Section 5.1, an additional boundary condition has also been placed on the

particle velocity, i.e., up = 0 at x = 0. As - result of these two conditions

the line x = 0 is both a streamline and a particle pathline. The fixed location

of these lines, in this case, makes the solution somewhat simpler, since

the points denoted 4 and 5 in the field point and right hand boundary point

calculations need not be established.

The left hand boundary point calculation is initiated by setting the

variables at point 3 equal to their respective values at point 1. The location

of point 3 is found to be*

•; *The program currently allows the left hand boundary to have a velocity, so
"i' ~that piston problems can be analyzed (without particles). This option was
': used only for program checkout and will not be considered here.
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t

3

2

x I1~

x

Figure 7-4. Left Hand Boundary Point Calculation

where c is defined in equation (7-3). The velocity at point 3,u 3 equalsu

zero, by definition. The pressure can then be found from the compatibility
relation for left running characteristics (equation (3-34)), and is

P 3 = P2 + [RHS-(t 3 -t 2) - u 2]/G- (7-288)

where RHS- can be found by analogy with equation (7-7) and G- is specified

by equation (7-8).

The temperature is found by integrating the gas streamline ccmpatibility

relation (3-37) from point 1 to point 3, and is given by
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T t) 1  
1 ) (P -P + (t [-1)

3 + j 1(t 3 - t 1 )
(7-29)

where () quantities are base.. on conditions averaged between points 1 and

3.

The particle velocity, L "s been assumed to be zero, hence, in

a similar manner, using equation '3 -41), TP3 is found to be

T - i- t )IT + (t3 -tl)[&I, - Qp/C] (
T =t (7-30)P3  pp +

The particle density is found in the general manner discussed in the

field point calculation; however, in this cdse, a point 6 does not have to

be located, since Bu p/ax can be simply approximated as

B u2
_ = 2 (7-31)

ax x 2

The value of pp can be computed from equation (7-22) by replacing the

5's with l's. lIke the other calculations, the left hand boundary point

calculation is iterated until equations (7-23) and (7-24) are satisfied.

7. 1.4 Ordering of the Calculations

As mentioned earlier, the method of characteristics solution isF obtained by the repeated application of the three unit processes previously

° scribed; the field point, and right and left hand boundary points. In

order to achieve a useful solution, however, a logical method for determining

the order in which these calculations are to be perfcrmed is required.

Several possible ordering schemes are possible, each having certain

advantages and disadvantages. The scheme outlined below was selected

as being the most appropriate for the problem; all constraints considered.
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After a steady state solution has been achieved, an initial pertur-

bation is added to it to generate the initial line, at t = 0, for the character-

istics solution. The number of points, M, used on the initial line

determines the mesh spacing for the solution. The characteristics solution

is initiated by a field point calculation using points 1 and 2. Additional

field point calculations are successively carried out until a total of M-1

have been performed, the last one involving points M-1 and M. At the

completion of this first stage of the solution the x-t diagram has the form

shown in Figure 7-5.

ONNA

2 3 M-1 M

Figure 7-5. x-t Diagram After First Time Step

Another series of field point calculations is then performed using

points 1', 2' .. N'(see Figure 7-5). Upon completion, a left hand boundary

point calculation is carried out using points 1 and 1', and a right hand boundary

point calculation using points N'and M is also performed. At this point the

x-t diagram looks like the one illustrated in Figure 7-6.

t

M-1

it 2'

M

x
12 3 IM-1 M

Figure 7-6. x-t Diagram After Two Time Steps (one complete

"cycle" of the characteristics calculation)
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The features to be noted from this figure are as follows:

1. Except for the new point M (right boundary point), all of
the other points (1-(M-1)) have about the same value of
time.

2. At the end of these two rounds of calculations the number
of points remains the same, however, the locations of the
points are somewhat displaced from their original positions.

These features cause the characteristic mesh network to become skewed.

The skewness of the network generally becoming worse as time passes.

This skewing of the mesh is a normal feature of characteristics solutions,

and, as long as it does not become drastic, is not usually a cause for

concern. In the present case, however, the skewness is undesirable due

to the coupling between the flow and the transient burning rate calculation.

The burning rate analysis is one dimensional in that it considers each x

location independent of the others, and neglects longitudinal energy transfer.

At each x location, however, the transient burning rate is a function of the

pressure history at that location, for all time. In order to carry out the

burning rate analysis, then, the pressure must be known at specific x

locations, not at the somewhat random intervals that result from the usual

characteristics mesh. This situation could have been relieved by essentially

carrying along two different meshes; the characteristic mesh, and an ortho-

gonal one, obtained by interpolation within the characteristic mesh, having

fixed x locations, for use in the burning rate analysis. Such an approach,

however, results in large computer storage requirements and an unneces-sarily
complex code.

The remedy for this problem that was adopted does not require two

"sseparate meshes to be carried along. Rather, when the point shown in

Figure 7-6 is reached, the mesh is rec ified by interpolation; thereby creating

a set of points all at the same time, and at the same spacing as on the

initial line. This pattern is then repeated until the computation reaches the

desired time level. The details of the interpolation procedure are presented

in the following s,.ction.
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7.2 Interpolation - Rectification of the Characteristics Mesh

The interpolation of the characteristics results, in order to obtain a

rectilinear mesh, could be carried out to varying degrees of accuracy. It

was felt that the increased complexity and computation time associated with

higher order interpolation schemes was not warranted since, in many practical

cases, their theoretical accuracy advantages are often not realized. Thus
linear interpolation has been used throughout.*

The interpolation is performed in the following manner. First, values

of the variables at the original x locations are obtained by interpolating

along lines connecting the new points 1, 2, ... M. Each of these points

(denoted by primes in Figure 7-7) will then, in general, differ only slightly

in their time coordinate; except for point M, at the right hand boundary,

which usually lags considerably. The "regular" points, i.e., 1, 2, ... M-1,

are then searched to determine the one having the smallest value of time,

denoted tmin. -'

•i 2' 31 3 (M-) M I

tmin 211 M"

I • M

Aix
1 2 3 M-1 M

Figure 7-7. Interpolation Diagram For Rectifying
the Characteristics Mesh

*The interpolation procedure can affect the accuracy of the results. Test
cases with, and without, interpolation, using a quasi-steady burning rate,
have been computed and a comparison of the results showed essentially no
difference, at ý'e end of 200 time steps. These cases did not have steep-
fronted waves; if they did, differences between the solutions would
probably have been evident.
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This is usually point 1. Interpolation is then p;erformed on each of the x =

constant lines to obtain a set of points at the uniform time, tmin* These

points are denoted by double primes in Figure 7-7. The original differences

in the time coordinate are shown greatly magnified in Figure 7-7 so that the

procedure may be clearly illustrated. The new right hand boundary point,
M", is established by extrapolation. This could be avoided by solving

for an extra "dummy" right hand boundary point (shown as M') using points

M and M-1, and then interpolating. This latter procedure is probably some-

what more accurate; however, it has not yet been incorporated into the

computer program (and probably will not be unless the extrapolation procedure

is found to be seriously lacking).

When the double interpolation procedure is completed the set of points

obtained are directly analogous to the original set of points on the initial

line, t = 0. The whole computation cycle can then be repeated as many times

as desired. In the nondimensiona& coordinate system employed the points

on the initial line are a distance Ax = 1/(M-l) apart. It turns out that the

time increment for a computational cycle, tmin in the illustration, is almost

exactly equal to Ax. This result can be used as a rule of thumb to determine

how many computation cycles are required to _.ach a given value of time.

It should also be pointed out that since the time step is directly proportional

to the spatial increment, the total number of mesh points, and the computation

time, for a given problem varies as Ax 2 . (If the number of points on the

initial line is doubled, the computation time will approximately quadruple).

As a consequence of this situation, efforts to optimize the accuracy-mesh

size tradeoff are well rewarded.

Incidentally, the interpolation procedure also prot :es two desirable

by-products. First, the randomness of the usual skewed characteristics

mesh makes the interpretation of the calculated results difficult. In fact,

in many appfications the characteristics solution is stored on tape and later

processed by a separate interpolation program. Second, the interpolation

procedure allows the mesh to advance equally in time across the entire

domain of interest. This eliminates the requirement for additional logic

to prevent the calculation of points past the desired maximum time in some

areas of the mesh, while the remaining portions of the mesh catch up.
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7.3 Transient Burning Rate Solution

The interpolation procedure, Just described, provides the pressure and
velocity histories required for the transiet burning rate calculation. However,
before the burning rate expression can ba numberically evaluated the deriva-

tives in equation (4-68) must be written in difference form. A simple two

step formula is used, which yields the following*

d &) P (T) -P(T-)

(7-32)
-LýT -

d m' m mIm
Since m'/i(T) is the unknown being evaluated, the term involving it is
brought over to modify the multiplier on the left hand side of equation (4-68).

The burning rate expression is also written in terms of the nondimensional
time - (see equation (4-59), the t in this equation is dimensional), while

the remainder of the analysis uses the nondimensional time t (equation (3-18)).

The two times are related as follows:

L r(
a• f 4 c (7-33)

Since r is a function of axial distance the relative time constant, tc, also

varies axially. Defining,

S •5' = 6/tc

C 2 (C + tc/r.)i
Cl •(1 +2)C

C2= a t (7-34)

C 3 = 2nABt

C4= 4 nAB(t
4 3 c

*The details of the solution are worked out only for the pressure coupled case.
The calculation of m'/m- for velocity coupling is essentially identical if nv, 8 v
and c 1 (fu I-ut) - e2 (u-ut) are used instead of n,B and p'ip.
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and using equations (7-32) and (7-33), the transient burning rate can be

expressed in the final form used on the numerical solution.

_ •t-6' t (9-t)

%-(t) =[1-C16' (2-t 8') +C26' 3C 2 F

0

t-C4 e' t (§-t) t-6'
+3C4 P 79()e 3 P eC-t

(7-35)

t-' t (•-t)

C' +F V P

9 e c2•() d9 +V C (t-61) + C W• (t-6":

(t)C (2-t 6 + C8')'
P c 3

The first two integrals in (7-35) must be integrated from 0 to Zhe current

time, t (actually t-6'), each time step. As time goes on these integrals take

longer and longer to do, and require increasing amounts of computer memory

to store all of the required past history.

The second two integrals in equation (7-35) may be written as

[ t-0' t-6' t
[03o' ()et d-C2 --.- e d•_ (7-36)

0 0

with their dependence on the parameter t explicitly removed. Hence, these

two integrals need not be reevaluated from . each time; rather, a running

sum is kept, which is added to at each time ,. ;p. The latest value of the

sum of the two integrals is then multiplied by the pre-exponential factor

involving t.
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The integrals are currently evaluated using the trapezoidal rule.

Numerical tests have confirmed that this simplest of integration formulas

yields accurate results for most cases of interest. If cases are encountered

for which this method proves inadequate, it would not be too difficult to

replace it with a more accurate (but more complex) formula.

7.3. 1 Extending the Transient Burning Rate Solution to Long Times

The current method for computLig the pressure and velocity coupled
transient burning response requires four quantities to be stored at every axial

location each t>-e 'hat a calculation is made. These quantities are:

-- anu -- (7-37)

p m

IC(Iul-ut) - 2( u-ut) and vm

As time increc:ses, computer storage requirements will eventually exceed

the available core of the computer being utilized. Additionally, as time in-
creases, the burning rate integrals (Eq. 7-35) must be evaluated over longer

and longer intervals. This causes the program execution time to increase non-

linearly, i.e. if the final time of the solution is doubled the execution time
increases by a factor greater than 2. A method for at least partially ameliorating

these drawbacks has been developed, however.

In practice the effect of a disturbance at a given time does not last for-

ever. Its effect on the burning rate should decrease as time goes on, eventually

damping out. Thus, one should be able to limit the amount of ',ack history that

need be considered. The time interval over which the effect of past distur-

bances disappears is dependent upon the values of A and B in a rather complex
manner. Based on the analytical results, presented in Appendix A, for the

special cases of step or experimential pressure changes it can be hypothesized
that the effect of a disturbance at a given time, T , should decay exponentially

with time at a rate something like e (x 2-y-l )(T - where-

x = A(I-B)

y = [0-(AB-A-I)2 
(
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Figure 7-8 shows the locus of the successive peaks in the transient burning rate

response to a pressure disturbance of the form

C1 cos(It) t!3.48 (T .274)
p (7-39)

-= 0 t>3.48 (> .274)
p

This response was calculated using a small computer program which was devel-

oped solely to integrate equation (4-68) for a given pressure variation.

The result shown was obtained with the burning rote parameters A and B
equal to 15 and .7 respectively. With these values of A and B x = 4.5 and y =

5.454, therefore, based on the aforementioned hypothesis it would be expected

that the response would die out at a rate like e-1 0 "5S The actual response,

shown in Figure 7-8, damped, e3sentially exponentially, at a rate between

e- 9 .5T and e 10T in relatively good agreement with expectations.

The example Just discussed serves to illustrate that the response to a

disturbance which occurs at a particular time eventually damps out. Since the

current transient burning rate analysis is linear, this feature can be exploited

to limit the amount of computer storage required to obtain solutions over long

times. By using the principle of superposition the pressure or velocity distur-

bance history, at c given axial location, can be considered to be the sum of a

series of discrete disturbances, each localized in time. The response to a dis-

turbance which exists only from t = t 1 to t = t 2 will damp out (to within any

given tolerance) in some time interval after t 2 , denoted Atd . The size of this

Interval being a function of A a'.cý B. Thus knowledge of the disturbance which

existed between tI and t 2 and the subsequent response to it becomes superfluous

after a time equal to t 2 + Atdo

Based on this concept, a method for obtaining instabUity solutions out to

as large a time as desired can be constructed, which requires no more storage

than would ordinarly be requirerd to compute the solution out to t = 2Atd. The

procedure is as follows:
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4m

.C= .1cos(rt) t <3.48

p

1 - 0 t >3.48

'0

00
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.0001!

0 4 8 12 16 20

Nondimensional Time - t

Figure 7-9 Example Of Transient Response Damping Subsequent To The Cutoff
Of The Pressure Perturbation.
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1. For times less then Atd, the burning response is computed in the

straightforward manner discussed earlier. This is shown pictorially

in Figure 7-9, for the case of a pressure coupled response. (Actually,

the disturbance will typically have several cycles in ýtd' however

only one is illustrated).

S2. At times between t = a and t = 2 -d the disturbance history at a

given location is divided into two discrete parts (see Figure 7-10).
One Q, 'turbance beginning at t = 0 and ending at t = Atd, and the

other beginning at t = Ltd. As shown in Figure 7-3, after Atd the

response due to the first disturbance begins to damp while that due

to the second disturbance grows. The total transient response is
simply the sum of the two, i.e.

1, +(7-40)

m m m

3. When t oecomes greater than 2Atd the respc .se to the first distur-

bance should have diminished to the point where it is negligible.

Tharefore, the calculation :f ft is ceassd; the second disturbance

becomes the first, and a new disturbance, now considered the second,

is initiated at t = 2. The situation it tnen exactly as it was at
d*

t = At This process Is repeated after each -td time interval until the

desired time is reached.

When velocity and pressure coupling are treated simultaneously the afore-

mentioned procedure leads to a total response given by the sum of four contribu-

tions (at t >.td), i.e.

= _L + [. m' + [m]v (7-41)
m m P 2 m 1 m 2

where the p and v denote t-ressure coupled and velocity coupled response, re-

spectively; while the subscripts I and 2 pertain to the first or second distur-
bance oZ each type.,
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i Figure 7-9 Pressure Coupled Response For t <Atd
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Figure 7-10 Pressure Coupled Response For atd <t < 2Atd
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7.4 Steady State Solution

The method of solving the steady state equations of motion has already

been discussed in Section 6. Basically, the procedure is as follows. The

equations of motion, in conservative form, are written as a set of six

simultaneous first order differential equations (equation 6-15); which are

then integrated using either an Adams-Moulton or Runge-Kutta integration

routine.

As discussed in Section 6, the solution is actually an iterative one;

wherein a value of chamber press,:e, which yields the proper Mach number

at the end of the grain, must be found. Newton's method is used to provide

further "guesses" of the chamber pressure, after the initial solution has been
Scarried out. This technique has worked quite well. Typically, about two

iterations are all that is required. Even when very poor initial pressure guesses
were specified, solutions rarely took more than six iterations to converge.

There was, however, one problem with the steady state solution. The

boundary condition specified at x = 0, u = up = 0, corresponds to an initial
PZ

state of dynamic equilibrium between the particles and gas. Like the

chemical reaction rate equations these equations are of the "stiff" type

and are very difficult to handle, at near equilibrium conditions. Standard,

explicit, integration routines like Runge-Kutta and Adam-Moulton are

unstable under such conditions, unless extremely fine integration steps

are used. This problem can be overcome by the use of an implicit inte-

gration technique, as proven by the results of Reference 67, for the chemical

K . kinetics system of equations. In the present case, however, the numerical

difficulties at near-equilibrium conditions have been overcome by using an

approximation, which serves quite well. The time, and expense, of changing

to an implicit formulation and solution was thereby avoided.

The approximate method for overcoming the numerical problem is based

on the observation that the gas velocity increases in a very nearly linear

manner in constant cross-sectional area chambers. This is due to the fact

that the burning rate does not vary to any great extent from the beginning

1k to the end of the grain, for most motors.
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It will be recalled (see Section 5) that the fractional lag nozzle solution

is based on the assumption that velocity is proportional to axial distance in

the region of the throat. The fact that u is also approximately proportional

to x in the chamber means that a fractional lag analysis, similar to that of

the nozzle region, should yield a very good approximation. The fractional

lag analysis in the chamber differs somewhat from that in the nozzle due to

the pressure of mass addition, however, very similar resuits are obtainea.

Starting from the fractional lag assumptions

u K'u
p (7-42)

T = 1 - L'(1-T)

it follows from the continuity equations that

P 2 0o7-3

p KO

where 02 is the ratio of particle to gas burning rate (equal to 01' the

particle to gas weight flow ratio). Without going into details, it can be

shown that when the burning rate w is then assumed to be invariant with

respect to axial distance the constants K' and L' become,

K' = F-1 + (l+4/D)•]

(7-44)

=L' 1/P 1+3 PrC(1-K)/K"I

where the constant, D, is based on a Stokes flow analysis and is

D (7-45)

"This approximate chamber fractional lag solution is used in one of

two ways. If the particle size is bc small, or other conditions are such,

that near equilibrium (almost no lag) conditions exist throughout the chamber,

then the approximation is used to obtain the complete solution, from x = 0 to
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x 1. On the other hand, if conditions are such that near equilibrium exists

only near the head end, the approximation is used only until the normalized
particle velocity is greater than .01 (u > .01).

p
The accuracy of this approximate technique has been tested in a few

cases by comparing the results to ones obtained by using the exact equations

and very small step sizes. The so-called "exact" solutions required that

the initial conditions, at x = 0, be slightly perturbed out of equilibrium.

Even without accounting for the slight differences in initial conditions, the

"approximate" and "exact" results agreed to within a fraction of a percent,

for the conditions considered. The steady state particle and gas velocities
•' calculated for one of the test cases are shown in Figure 7-11.

For these conditions the gas velocity satisfies, almost exactly, the

assumption of linear variation with distance; the primary assumption in the

fractional lag analysis. The steady state solution for the case illustrated

was actually found two ways; by using the fractional lag approximation

for the first 8% of length, and using it over the entire length. Tie calculated

velocities were identical; illustrating the accuracy that can be achieved with

the approximate technique when the assumptions upon which it is based are

fairly well realized.
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Chamber Pressure - 575 psi
Chamber Diameter - 3.4"
Chamber Length - 23"
Area Ratio - 4.5

.16 Particle Radius - 10o
Weight Flow Ratio - .37
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Figure 7-11. Two-Phase Steady State Solution Gas and
Particle Velocities Versus Distance
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8. ANALYSIS OF LINEAR STABILITY

Since the numerical calculation is valid for all amplitudes, it is useful

as a check to compute independently the result for linear stability of a normal

mode in the chamber. Eventually one finds a formula for the growth rate of

an initial disturbance having the spacial distribution for a classical natural

mode. The procedure followed here is that presented in References 31 and 52.

The calculation breaks down broadly into two parts: (1) linearization

of the governing differential equations and construction of an inhomogeneous

wave equation; (2) solution for the complex wave number for each of the

stationary (harmonic) natural modes. All flow variables are assumed to be

sums of steady, () , and fluctuating, ( )', parts. The fluctuations are

taken to vary harmonically in time; thus, for example, the perturbation of

pressure is

where (p'/P-)o is the initial value and k is the complex wave number,

"• ~1
k (w -ia) (8-2)

Therefore, if Lhe growth constant, a, is positive the waves will grow. For use

in checking the numerical results, consider the value of p' after one period

of the oscillation, so t = 1/f = 2TT/w. Then since t/c, is normall7 much lees

than unity,

• LD')t QL' )oei((L'- w• (k " )o e' 2'e2• w

P _-/2 rr = (#9 .10 ~ e2~e~

(1) (1 2 TT

f,-,
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Hence, the calculated value of the growth constant is

OL -- f )01(8-3)L p )t=_ -
f

A value for a is, therefore, ea-ily found from the numerical calculation; the

purpose here is to obtain a formula for the linear approximation to the

problem.

The analysis begins with the complete inviscid conse.. rn equations,

given in Section 3.2 but repeated here in slightly altered from.

Conservation of Mass

(Gas Phase) (oA) + - (puA) wA (8-4)

Conservation of Momentum AU + ou - F

6 x bx

Conservation of Enercgy CvA •t-T + °C AubTx +P-p (uA) (8-6)
V d t V a X a~X

= + Ae +u 2 )wA+Q A+u wA
KT- p Ppp

+ (e -ep)wpA

where F and Qp are given by equations (3-8) and (3-14) respectively.

and teo = eos - e° = C V(Tos-T ) is the difference between the energy of the

gas entering at the surface and that at the same position in the chamber,

and eps is total energy of the particles at the surface.

*In the numerical analysis, it has been assumed that the flow coming in at the

surface enters always with the stead flame temperature. Hence AT' = - T.
It is also assumed that epos = ep.
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An equation for the pressure can be formed by adding RT times (8-4) to

R/C times (8-6):
V

_ (pA) + yp -p ,(uA) +uA = (a2 +R To+U 2 )wAýt AX x0
(8-7)

+R- A[(-u)F+Qpj +u2p WpA
V pv

where, as in the numerical analysis, epos , ep is assumed.

The linearized forms of (8-5) and (8-7) are

p Tt %u'+A P'P - -A-a- (u-u') +A(F - u'-W) (8-8)
AX d x

(A Ap')+ yp - (Au') -UA 't - p'p (uA) +AP'11  (8-9)

where

-2- Ra w' + (v RT'+R,_T') W +-L A Q (8-10)C

gv

Here the speed of sond is for the gas only, a 2 
= y

The wave equation for the pressure fluctuation p' is constructed

by differentiating (8-9) with respect to time and substituting (8-8) for
t• •;(A u')/a t:

x A x x -2 t2
a 6 t

*See footnote to previous page.
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with

h o- ---uU') + + / • d (-uA) (8-12)
xa 2  t ) tx 2 6t A dx

8-u) d -n A 1 1 P-

- TI di + [A (F' -u'-])
a 2 At +A 8x

The boundary conditions on p' (usually at x = 0,L) are set by solving the

mo.-.enl.jlm equation (8-8) for 6 p'/6 x).

S= - f (8-13)

f = uPk- + o (u u)- (F -u' ) (8-14)

A formula for the wavenumber is found by comparing the problem

governed by Equations (8-li) dnd (8-12), with the unperturbed problem

(i.e., hi, = f 0). As shown in Ref. (52), the result is

L
• •I•hllp 2 .Adx +LpL fAdXjo (8-15)

• L :L
2=

2 0

where

E p adx (8-16)

0

and p•, k are the mode shape and wavenumber for the unperturbed problem.

With h1i a;,d f given by (8-12) and (8-16), the formula for k~can eventually

be put in the form
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L L

(k2  k2) El = I k r + " A i a,0p W'Adx
a- d

L~ L
L

+ , "i 2 +dP ,A dx
+i ~ ~ _---k -- J dx
a 0 0

L 
dpd L

dx a L.-? Adx (8-A7)
0 0o1

L L LR k,F'-d A dx +i \-- %" Qp, A dx (8-17)

aa

0 0

\L L
-I- R .iAT' P• Ax •dx "p

0 0

For the purposes here, it is sufficient to consider the case of constant

cross-sectional area. Then the continuity equation for the average flow gives

the relation between W and du/dx:

du (8-18)
dx* )/ 

8-18

since it is assumed throughout that the mean values of pressure and density

are constant. Hence (8-17) simplifies to
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L U L L

(k 2k2) pdx k+-- - k ukdx

0 a 0 0
+ L ('KdP1  - f

d(8-19)
oa k t0

L dpL L V
"- F- dx dc+i_--- Qp'p! dx

jt0 dxa 0-

k L L
-t_ R 6T P1 'dx + U dx

0a 0

The first group of terms represents the interactions between combustion

and the wave m:~tions at the head end (x;0) and the lateral boundary (theI

integral over wu'). The influence of the nozzle is represented by the term

evaluated at x =L. An important stabilizing effect is represented by the
integral over (dp /dx)a. This is due to the inelastic process of accelerating

S~the incoming gases to the acoustic speed (u' -- dp£/dx). The next group of

S~terms represents the effects of particles in the gas phase - a stabilizing

S~influence. For precise correspondence with the numerical analysis, Qp' is

p 04

,•'• ~ the fluctuation of heat transfer from the particles to the q:as. The last term

T h) is due to non-isentropic interactions between the wave mbtions and the

Scombustion processes at the boundary.

tmNow for a uniform port, the unperturbed mode shape and frequency are

p= Ccos (k x) (8-20)

_L (8-21)
SL
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and the acoustic velocity is

i dpt i
u= - _ sin (k I x) (8-22)oa k£ dxa

ol is conventional to introduce an admittance function for the exhaust
nozzle, defined as

u' 2
- n (8-23)

a Y P

Then with u' =u=atx=O,

+~ L
i pa k u' p =i k (An+ e (8-24)

ca2 0

where M is the Mach number at the entrance to the exhaust nozzle.

The source of mass, w, is defined so that ,pA is the local rate at which

mass is added per unit length of chamber. If q is the perimeter and mb is

the mass flux of gases inward from the burning surface, then wA = m q. Now
the fluctuations of mass flux, rob', is related, for pressure coupling only,

to the pressure fluctuation according to (see Section 4. 1.4):

mbi
Rb -. (8-25)

bmb YP

SHence, the contribution from the lateral boundary in (8-19) can be written
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L Li - Wd% Sb • b R dp,
ta kJ,'P,'d,\j",'b P" , I 'L/ (8-26)

0 Yp 0

where Sb qL is the area of burning surface. With p' • Pl cos

and Rb independent of position, this gives

L k S
i a kj• P• pV dx=I t "("J

4~1 iak\j 'x -- I~ (8-27)
0

Here mb= U and K b!ub =mb/Pa.

The contribution from the inelastic accelcration of the incoming

gases is

L r k SI
Sa •xdx 2 i)2b (8-28)i: • k ,,dx A M. -0

The last integral in Equation (8-19) will in general involve both the
admittance and response functions since, as shown in the discussion of A

the response to transient burning,

AT
6T_•'=p'¢M. Ab (Rb 1 ) (GENERAL) (8-29)

If the processes are isentropic, the fluctuation of flame temperature, Tf,.

equals the local fluctuation of chamber temperature, so AT' = Tf' - T'= 0.

But as noted earlier the fluctuations of flame temperature have not been

taken into account in the numerical analysis: Tf' = 0. Hence AT' =-T',

the isentropic value associated with the waves in the chamber:

AT' - (y- 1) ' (ISOTHERMAL) (8-30)

8V8
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For these two cases, the integral becomes

k L k ..S r (Y- 1) (ISOTHERMAL)
- i k R AT' p••dx = i • -- Mi

a 0AX R b- 1 Ab (GENERAL)

(8-31)

Hereafter, for comparison with the numerical results, only the isothermal

case will be discussed.

For simplicity, consider only the particle/gas force term in (8-9) and

Ignore the heat transfer for the present. A straightforward calculation of

the lnearized motions for small particles in oscillating Stokes flow gives

* C dp,

F1= m A (8-32)S1ý + t•rv dx

where Cm is the mass fraction of particulate matter in the chamber, and '-

is the characteristic relaxation time for a particle. Since C and -are

constant throughout the chamber, one finds m

L dp C k 2 L

.Fl- m (8-33)
dx l+i Wz v 2

0

With all the above results, (8-19) is explicitly

k S
L'-- (k_ 2 )= ik (An+LM ) -. _ •. Rb

(k 2 k I ,(n + 2 -A7 M b

k S
AI b

2 Mb
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C k2Lm Al+1WL-T 2

k S..+ I• "b _

2. 2\A 2
Now k ikve k2 - 2 1 xk /a and the imaginar, part of the last

equation gives

k - %a; -R 2 1) (W, TV k L

SL_ MI '8b (R 1) -(A + k m
2 "-A I b (- n - .,)- 1 - 1.

"-'T -, • -T M (8-34)

The factor C (Wv T)/(I + j,' r2,) Is exactly the result shown in Equation (8-39)m I
of Reference (53); that is, the attenuation constant due to particles is

W2T

p (m w)1p (8-35)

The factor 1/2 arises from the integration over the mode shape, while the

remaining factors constitute an approximation to the particle damping. Hence,

it is clear that more accurate estimates of the particle damping are

accomodated in (8-34) simply by defining a as shown, and using whatever
p

numbers are available for a
p

_M S aLL Mb~ b Rbr) ,- 1~ "-(A (r) 24 (8-3
""- 2 A -b n - a (8-36)a a
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This is the final result for a uniform port. Recall that it involves explicitly

the assumption of isothermal pressure coupling.

8. 1 Numerical Example

Consider the pulsed motors tested by Aerojet; the following values
are used:

D 1.99 in.

L = 23.5 in.

p = 1400 psia

r = .436 in./sec.

a = 3830 ft./sec.

T = 6110 OR

= yp/?= .01655 slugs/ft.3= .00852 gm/cm.3

A = 3.11 in.2

Sb = rrDL 147 in. 2

SP s= 1.5 gm/cm. 3 (density of propellant)

The Mach number of the gases leaving the burning surfaces is computed from
the continuity relation applied to the interfacial conversion of solid to gas:

- - + ou= r
pp U

Then assuming that the particle and gas velocities are the same,

u (8-37)

Sp

"0
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For the Aerojet propellant ,/o .37 and
p

(_00852) (1.437)(2
(1.5) (.436) -4.66 ft./sec. (8-38)

The Mach number of the gas flow is therefore

M 4866 = .00122 (8-39)b3830

By applying conservation of mass to the average flow in the chamber,

one finds for Mach number of the flow entering the nozzle,

A- S - .0577 (8-40)

For quasi-steady behavior of the nozzle, the admittance function is real,

p and equal to

I An = 00577 (8-41)
n 2

With these numbers, (8-36) gives

A

.029- .(R 1 17)- .0635- (8-42)
F1920 " b 3840

(Lateral Burning) (Nozzle) (Particles)
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A wave will grow if a. > 0, or, if the real part of the response function is

sufficiently large,

A

Rb(r) > 3.37 + (8-43)

Equation (8-36) gives the symbolic result,

A(r) apL

Rb(r) > 1.17 + n2 -- + I + _ (8-44)
S/ aMaIV

This shows the obvious stabilizing effect of increasing Mach number

of the mean flow.

""1

I

5
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9. NUMERICAL RESULTS

In order to check out both the analysis and the programming,

several simple test cases were solved. First, the left hand boundary

condition was modified to correspond to that of a piston undergoing

constant acceleration. A perfect gas solution was then obtained without

propellant burning or particles. The flow field generated by the piston

motion is isentropic, and the solution at any point in the flow can be

found using the Rieman invariants. The numerical solution accurately

reproduced the known flow field, thereby verifying the characteristics

analysis by itself.

The programming of the transient burning analysis was checked by

comparing the transient burning rates computed by the instability program

to those obtained from a simple check program (see Appendix A). When

the pressure field calculated by the instability program, at a given x
location, was input to the check program, the results of the two programs

were identical, and served to corroborate the numerical accuracy of the

transient burning rate solution. (In Appendix A the results of the check

program were verified by comparison with thieoretical solutions for several
special cases).

The aforementioned test cases were basically designed to check the

accuracy of --he computer programming, and do not, themselves, contribute

to the assessment of the present instability model. During the current

project there was not sufficient time to systematically vary all of the

solution parameters, or to try to optimize the inevitable accuracy-solution

time trade-off. However, a limited number of instability solutions have

been obtained and the effects of varying many of the solution parameters,

over, at least, a limited range, have been demonstrated. Many of the

solutions were obtained for a solid rocket configuration for which experi-

mental data was available•2 3 ; however, no attempt was made during the

present effort to obtain quantitative results. Rather, the solutions were

obtained, and compared with data, so that the qualitative validity of the

results and the predicted trends could be ascertained. The results obtained
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to date are summarized in the rest of this section. Except for Section 9. 6,

all of the calculations considered pressure coupling only.

9.1 Waves In a Closed End Tube

Another, of what might be termed a consistency check was made b,'

modifying the right hand boundary condition to correspond to a solid wail.

This allows the problem of wave propagation in a closed tube ta be studied.

If an external means of driving the waves were also added problems of the

L type discussed in Section 2.1 could be analyzed. No attempt to do this

was made at this time. For waves with amplitudes low enough for the

propagation speed to approach that of an i.ifinitesimal sound wave, there

should be no distortion of -he wave form as it travels up and down the tube;

although, if a loss mechanism is present, the wave will eventually damp

out. Without a driving mechanism waves cannot grow, however, if they are

of finite amplitude their wave form changes during propagation, and should

become steeper.

Figures 9-1 and 9-2 show the pressure and velocity waves over one

cycle (the time for a wave to travel from one end to the other and back)

for the following conditions: length, 23"; chamber pressure, 360 psi;

chamber temperature, 61100F; particle diameter, 10u, particle weight

fraction, .37; = 1.2. The initial pressure perturbation corresponds to a

first harmonic standing wave with normalized amplitude (small) of .01.

At the frequency corresponding to the above conditions (about 1400 hz)
particle damping is large, and the amplitude of the wave diminishes rapidly.

At these low amplitudes the flow remains linear, as can be seen from the

invariance of the wave form and the fixed location of the node point (x = .5).

The amount of particle damping predicted by the current program was semi-

quantitatively compared to the results of Dehority5. The

agreement between the results was within the degree of uncertainty to which

the comparisons were made (approximately 10%). The pressure and velocity

waves at approximately one half, one, and two cycles, for a closed tube

with no particles and an initial first harmonic pressure disturbance of 0.1

amplitude, are shown in Figures 9-3 and 9-4, respectively. This is not a

very high amplitude case that rapidly demonstrates nonlinear behavior,

however, at the end of two cycles noticeable steepening of the pressure
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wave can be seen, and the presence of a second harmonic is easily seen

from the form of the velocity perturbation.

9.2 Effect of Burning Rate Parameters--.A and B

The transient burning rate analysis developed in Section 4 contains

two parameters, A and B, which govern the burning response of a propellant

to an applied pressure disturbance. (The thermal diffusivity, h• , can almost

be considered as an additional parameter, since its value for a given

propellant is still subject to a sizeable degree of uncertainty).

Depending upon the values of A and B, the transient burning rate

perturbation can lead or lag the pressure disturbance, with amplified or

diminished response (i.e., the amplitude of the burning rate perturbation

can be larger or smaller than the amplitude of the pressure wave). In a

linear analysis, with the pressure assumed to be harmonic, equation (4-34)

yields the relationship between the burning rate and pressure. Implicit in

this expression is the assumption that the pressure has been harmonic for

all time; or, in more physical terms, that the process has been going long

enough for the initial behavior associated with the origin of the pressure

pulse to be inconsequential. In the present analysis, the pressure variation
need not be harmonic, and the response at times immediately following the

generation of a disturbance can also be calculated (Equation 4-68). It is

still informative, however, to look a bit more deeply at the linear, long

time, response; since many of its characteristics carry over, at least

qualitatively, to the more general case.

Figure 9-5 shows the real part of the response (normalized by the

value of the steady state pressure exponent, n) for A = 15 and B = .7, .9,
1., (w = 0) as a function of a nondimensional frequency, 0., defined as

= 2rnfX

f, being the frequency of the pressure wave in hz. Figure 9-6 is similar,

but forA 40, B .8, .9, 1.0. In Section 4.2 it is pointed out t-t A and
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B must satisfy the inequality

B+(BI/
A <~

and that the peak response occurs in the neighborhood of . = 3B. The

responses illustrated in Figures 9.5 and 9.6 do peak near the values given
by this relation. Furthermore, the magnitude of the peak value is seen to

grow larger as the values of A and B come closer to violating the above

inequality. At low frequencies, to the left of the peak, the burning

response leads the pressure, while at high frequencies it lags. (At long•1;times, when equation (4-34) is appropriate).

0 The transient burning response to more general nonlinear waveforms,

which are not pure harmonics, and have variable frequency, will of course

be somewhat different. However, when faced with the task of trying to find

values of A and B which yield calculated results that correlate well with

engine firing data, knowledge of the burning response to constant pure

harmonic pressure disturbances can be quite valuable.

Time has limited the extent to which the effects of varying the burning

rate parameters could be studied, using the present nonlinear model. In

order to make the calculations that were performed more representative and

meaningful the engine geometry and propellant parameters were selected

to approximately simulate the conditions of the experimental engine firings

reported in Reference 23. In these tests the engine was usually subjected

to pulsing, however, the configuration selected was one which was

Sspontaneously unstable, i.e., without being pulsed.

The main engine parameters were as follows:

SThroat diameter 0.775 in.
Port diameter 1.99 in.
Grain length 23.5 in.
Chamber pressure 1400 psia
Chamber temperature 6] 1OOR
Burning rate .32 (P/500) "
Particle weight flow zatio .37

9-L
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In order to bring out the burning rate effects more vividly particle

damping effects were kept to a minimum by selecting a particle size of

2+. Linear analysis (see Section 8.1)was used to provide a guide as to

the size of the response factor needed to initiate instability. Curves

such as illustrated in Figures 9-5 and 9-6 were then used to select

values of A and B thought to correspond to stable and unstable response.

The A and B values chosen were:

A=15 B=.7
A= 11.5 B= .64

In order to begin the calculations a steady state solution was obtained,

which was then, in turn, perturbed by the addition of a first harmonic

standing pressure wave with amplitude equal to one-tenth of the mean

pressure. Instability solutions were then carried out for approximately

three cycles++ Figure 9-7 shows the calculated pressure histories at the

head end, x = 0, and end of the grain, x = 1, forA = 15 and B .7.

Figure 9-8 contains the corresponding results for A = 11.5, B = .64. These

results correspond to the type of measurement one obtains with a pressure

transducer, except that the values shown are perturbations, i.e., they
have the unperturbed steady state values subtracted out.

As expected, the results indicate that if A = 15, B = .7 the initial

perturbation damps. While, with A = 11.5, B = .64, the wave ultimately

amplifies. In the former case, the wave damps approximately 10% per

cycle, while the unstable case shows an interesting nonlinear phenomenon

+The measured (as well as calculated) frequency was approximately 375 hz.
Reference 54 was then used as a guide in selecting the particle size.
Other calculations were also mnade with 5 u and 9 p particles (see
Section 9.4). At the quoted frequency, 9u particles are approximately
the size corresponding to maximum particle damping.

++Time has been nondimensionalized by L/ao; a• being the gas only sound
speed. If the wave speed in the two phase mixture were exactly equal to
af then a cycle would correspond to a nondimensional time of 2. Since
the two phase wave speed was less than af a cycle corresponded to
t 2.3.
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After the first cycle the wave is almost unchanged; however, the second

cycle sees the wave grow by about 40%, and by the end of the third cycle

the perturbation has been amplified an additional 50%. Figure 9-22 contains'

results for the same conditions, except f)r particle size, which show that the

perturbation may actually first damp before ultimately amplifying. It appears

that this behavior may be related to the "necking" phr,'umena which can be

observed in experimental pressure traces, followin '.% ,'.,g. An explanation

for the calculated results, and, hopefully, at least ..-rtia] explanation for
the "necking" phenomena, can be inferred from the nature of the transient

burning response.

The normalized values of the transient burning rate perturbation,

(as calculated using Equation 4-68), for the same two sets of A and B

values, are presented in Figures 9-9 and 9-10. The usual response factor

calculations are not applicable at short times after the onset of a finite

size disturbance. They assume that a harmonic disturbance has been

present for all time. Realistically, however, the propellant cannot be
expected to respond instantaneously to a sudden pressure change. The

change in pressure alters the hi.at transfer rate to the propellant and

initiates a thermal wave t'iat travels down through the propellant. The

initial response of the propellant, therefore, contains start up "transients"

which, if the frequency and amplitude of the wave do not change rapidly,

eventually die out. Only under these conditions of constant or slowly varying

* wave form, and damped initial transients, can the historic form of response

function yield even approximately valid results.

As shown in Figures 9-9 and 9-10, as well as in Appendix A, the

nature and duration of the initial transient burning response is a strong

function of the values of A and B, as well as of the nature of the disturbance.

With A 15 and B .7, the transient burning rate initially varies at a frequency

* close to that of the pressure wave, but with shifting phase angle. The ratio of the

magnitude of the burning rate fluctuations to the magnitude of the pressure

perturbation, I(m'/ýi)/(P'/ )', ((m'/im)(P'/P) is simply related to the

"response function by Equation 4-35, and will at times be referred to as the

response function) can be seen (using Figures 9-7 and 9-9) to vary f:om
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a little less than 2, initially, to a value of about 4 at the end of one cycle.

It then decreases over the next two cycles to around 2, which is approxi-

mately equal to the usual "long time" value of this ratio for the given A
and B values and frequency.

Here, the most vivid aspect of the initial transient, is the peak in

response at the end of the first cycle, at a value about twice that of the
"steady state" response. Even with this initial boost in resý_3nse the

pressure decays over the first cycle, although not as rapidly as during

the succeeding cycles. It is worth pointing out here, that the fate of the

pressure disturbance depends not only on the magnitude of the burning rate,

but also on its phase relationship to the pressure. Since neither the

magnitude,nor the phase, of the response remains co.astant it serves to

somewhat complicate the interpretation of nonlinear instability calculations.

The second set of results presented in Figures 9-9 and 9-10were for
A = 11.5, B = .64. Comparison of the pressure and burning rate histories
at the head end shows that the response factor is initially about 1.5, and

then grows to around 6.25, 7.75 and 8.0, at the ends of the first, second
and third cycles respectively. The "long time" value of the response factor

for this case is in the neighborhood of 8, so rather than exhibiting an

initial peaking behavior, these results show a gradual climb to a "steady

state" value over several cycles. It is this relatively slow build up in

response that accounts for the fact that the pressure does not increase

during the first cycle; only to be amplified at an increasingly faster rate

during the succeeding cycles. Although not proven yet, it can be readily

hypothesized thet the "necking phenomena," referred to earlier, that is

observed in pressure traces from pulsed engines, can be attributed to a

similar slow build up in burning response. It is hoped, that in the fiture,
- an investigation relating to this phenomena can be carried out, and the

validity of the hypothesis proven.

The previous discussion was based on observation of the pressure

history at a fixed location. It is also illuminating to look at the results

as a function of axial distance, for different times. Figure 9-11 shows the

pressure distribution in the chamber .ust after the disturbance was
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initiated and at the approximate end of each of the first three cycles.

Figure 9-8 demonstrated that the wave amplitude was unchanged after one

cycle. The new figure, 9-11, shows that the waveform also remained

essentially the same during this interval. At the later times, t = 4.6 and

6.9, the wave is seen to have grown, while the null point moves towards
the left and the positive portion of the wave becomes somewhat larger

in magnitude than the negative part (!Px---O Px=11). The wave is still

predominantly a first harmonic, but it is not pure any longez. Nonlinear

gasdynamic effects have caused the wave to steepen a bit; which, in

other words, says the wave contains some higher harmonic content.

Since the current analysis is nonlinear, the wave is, and must be,

treated in its entirety; however, it is still constructive, at times, to

consider the wave as made up of a basic frequency and harmonics.

Consider Figure 9-12, which shows the velocity perturbation in the chamber

(u -ut= 0 ) at the same, end of cycle,times. If the pressure disturbance was

a true standing wave the velocity wave would be passing through the null

position at the end of a cycle. As the number of cycles increase it can

be seen that the velocity wave develops a small remainder at the end of

a cycle (note the scale factor on the velocity axis), which by the end of

the third cycle is beginning to look reminiscent of a second, harmonic

velocity wave form.

Remembering the indications of at least a small amount c' higher
harmonic content in both the pressure and velocity waves, it is instructive to

look at the wave forrm of the massburning rate perturbation (j, - at0)
shown in Figure 9-13. The wave forms depicted are definitely purer than

those corresponding to the velocity and pressure. Note the central nodal

point at x = .5 has hardly been displaced even after three complete cycles.

Obviously, the burning rate, for this case, does not rapidly respond to

small, higher frequency, disturbances. This is the first evidence that the

current transient burning rate model yields a response which, essentially,

+The so-called transient burning rate perturbation shown in Fiqures 9-5
and 9-10is actually (u, - u.t=0)/j.t=0.
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is able to discriminate between harmonics. Something which it must do if

it is to be a viable model.

The next section will deal in further detail with the response of the

propellant to different harmonics.

9.3 Effect of Initial Disturbance Wave Form

Since neither the Form of the disturbances; which occur randomly i

a rocket engine chamber, nor the exact conditions generated by an experi-
mental pulsing apparatus are really known, it would be accommodating if

the instability results c-tlculated using the present model were insensitive

to the nature of the initial disturbance. As it turns out, however, this is
not the case; at le',, over the first few cycles.

Admittedly, the exact form of a small random disturbance should

hardly matter in an engine which is spontaneously unstable, since the

tendency of an engine-propellant combination will be to amplify only those
modes which are ultimately observed. If an analytical model is to be

truly representative, i- too must possess this properiy. In such a case

one should use some general wave form, made up of arbitrary riercentages

of the first harmonic and various overtones, as the initial disturbance and
let the model dictate which mode or modes will be amplified and which will

disappear. If a single pure harmonic is used (Ist, or 2nd, or 3rd, etc.)
as the initial disturbance oi'e runs the risk or. not being able to simulate

the actual response, since all the rest of the harmonics will not be present

i.-itially and may not be created, even through nonlinear modification of the

original wave form.

Similar considerations also hold with respect to predi-ting the results

of pulse tests. However, there are further complicatiig factors in this case.
(Neglecting, for the present, the fact that pulse guns usually introduce

foreign gases). First, the pressure pulse introduced is accompanied by

velocity and teraperature disturbances. Accurate representations of each

of these is, of ',ourse, not feasible. Second, the location and magnitude

of the pulse can infltence the measured results, even after many cycles,

LvLSand to the extent of e-ven determining whether th9 pulse will eventually grow
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or decay. Hopefully, the present made], with suitable modification

if necessary, will be able to serve the dual role of both predicting and
helping to understand the basic mechanism underlying e-,ch of these

effects.

Several instability solutions have been oblai-ed in an initial ,ffort

to understand the ch-,racteristic behavior of the present model, as it relates

to the foretoihg discussion. The engine ge',metry and propellant properties

were the same as those listed in the previous section, and the same two
pairs ofA and B values were used.

The first solution to be discussed was identical to the A = 11.5,

B = .64 case presented in the previous section, except the initial

disturbance was taken to be a 10% second harmonic, instead of the 10%

first harmonic employed e-trlier. The pressure and transient burning rate

perturbation histories at the head end and end of the grain are presented

in Figures 9-14 and 9-15 . Like the earlier cases, this solution was also

carried out for 3 cycles, however, since the frequency is twice as large,

the elapsed time is only half :.hat of the first harmonic cases.

In comparing these results for the second harmonic to the e'irlier

results (Figure.., 9 and 9-10 one is immediately struck by the fact that the

second harmonic damps, while the first was amplified. This difference can
be traced to the behavior of the transient burning response. At the higher

frequency the response factor (ratio of iormalized burning raite perturbation

to normalized pressure perturbdtion) peaks in the neighborhood of 2,

before decreasing to order unity; while, it will be recalled, that the

response factor for the first harmonic rose steadily to a value around 8.

Additionally, the response at the primary frequency was approximately

in phase, while the second harmonic response exhibits a significant pha:se

lag. This behavior vwas, of c,,urse, to be expected, in view of the

characteristics of :he usual linear r:sponse Fctor; as shown in Figures 9-1

and 9-2. For the engine configuration under ; -nsideration, the frequency

+For. instance, thO addition of velocity coupling to the transient burning

rate model.
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of the first harmonic is very near the peak in the response versus

frequency curve. The frequency corresponding to the second harmonic

is then significantly displaced to the right of the peak, and, hence,

results in a much lower burning response. The peak also corresponds

to zero phase shift, while the amount of phase lag monotonically increases

as the frequency becomes higher. Under these conditions, each of the

higher harmonics should be increasingly damped, as their frequencies
move further and further away from the peak on the response curve.

The pressure and velocity waveforms in the chamber, for the second

harmonic case, are presented in Figures 9-16 and 9-17, respectively.

Figure 9-16 shows the initial pressure disturbance, and the waveform
at the end of two cycles (t = 2. 39). The velocity peaks one-quarter cycle

after the pressure; therefore, in order to show the velocity waveforms

at close to their peak values, they are shown in Figure 9-17 at t = .3,

and t = 2.7. Earlier, in discussing the type cf initial disturbance to select
when solving a spontaneous instability problem, it was suggested that a

general waveform containing the first and several higher harmonics be

employed. In order to see how this idea would work out in practice, an
instability solution was obtained starting with an initial pulse consisting

of the sum of a 5% first harmonic and a 5% second harmonic. The same A and

B values (11.5 and .64) and engine configuration were stipulated. It will
be recalled that individually the first harmonic was amplified, while the

second was damped. The results presented in Figure 9-18 should, therefore,

Scome as no surprise. This figure shows the initial pressure distribution in

the chamber, and its subsequent development. The curves are spaced in

time at approximate intervals of _t = 1.3, corresponding to the time for a

full cycle at the frequency of the second harmonic. Every other curve,

then, corresponds to a full cycle of the first harmonic. It can be seen,

that as time progresses, the presence of a second harmonic becomes less
and less obvious, until, at the last time (t = 6.90), it has all but

disappeared. The same effect can be seen in the velocity, as demonstrated

by Figure 9-19. Here, as in Figure 9-12,the velocity waves are shown

only slightly displaced from their null positions (the times plotted are not

exactly full cycles, and there is also some effect of nonlinearities) so
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their magnitude is small. In fact, a comparison of the pressure and

velocity wave forms at t 6.9, with those of the corresponding first

harmonic only (initial pulse) case in Figures 9-11 and 9-12, indicates that

there is less second harmonic content in the waves which started with

50% second harmonic. This seeming paradox is due to the presence of

nonlinear effects, as explained below.

Both the "first harmonic only" and the "mixed" case were initiated

with 10% magnitude pulses. In the former case the pressure grows, after

the first cycle, and by t = 6.9 has been amplified about 220%. In the
"$mixed" case the first harmonic continues to behave in the same manner,

however, the second harmonic content (50% initially) is almost completely

damped out by t = 6.9. As a result, the wave, after initially being damped,

has only amplified by about 17% at t = 6.9. The nonlinear effect of wave

steepening, is, of course, amplitude dependent. The wave steepening

process corresponds to the generation of higher harmonics. At the higher
amplitude of the "first harmonic" case second harmonic content is being
produced more rapidly than in the lower amplitude "mixed" case. Thus,

while the second and higher harmonics damp fairly rapidly, they will always

be present to some degree in high amplitude waves, for they are continuously
being generated.A

The pressure and burning rate histories at x = 0, and 1, are presented

in Figures 9-20and 9-21, so they may be compared to the earlier ones for
the "pure" first and second harmonic cases (Figures 9-8, 9-10,9-14 and

9-15). The disappearance of the second harmonic content and lack of

burning response to it, is also vividly portrayed in Figures 9-20 and 9-21.

It was gratifying to observe this ability of the model to selectively

amplify the first harmonic, since the experimental pressure traces recorded

for this engine configuration showed it to be spontaneously unstable; with

very little higher harmonic content in evidence, even after many cycles.

The idea of using an initial pulse containing all the modes of interest

(at least the primary and lower harmonics, the higher frequency elements

9-12
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will always be created by nonlinear effects) has proven to be an

interesting one, and is probably worth adopting as standard. The effort

to perform further quantitative comparisons with data is certainly

warranted. This will involve, among other things, continuing the

calculations for many more cycles so that calculated and measured

growth rates and limiting amplitudes can be compared.

S9.4 Effect of Particle Size

For a given particle weight fraction, the amount of damping is a
strong function of both frequency and particle diameter. Several linear

analyses of acoustic wave particle damping have been performed,e.g., Ref. 53.

These show that, at a given frequency, the amount of damping peaks for

a certain diameter particle, and falls off, usually fairly rai..dly, for larger

and smaller particles. Nonlinear damping calculations have shown
that nonlinear effects tend to shift the particle diameter corresponding to
maximum damping without affecting the maximum amount of damping, itself.

When all of the other gains and losses are fairly well balanced the

amount of particle damping can be the factor which determines the
"stability of the rocket motor. Also, if the amount of particle damping is

large, it can improve the stability characteristics of an engine even if the
Sother gains are much greater thiý the losses.

The present analysis represents a step forward since nonlinear particle

damping is included in a total instability model so its effect is completely
coupled to the other combustion and flow phenomena. Currently, the model

assumes the particles are all of uniform size. This assumption was made

to enable the basic model to be assessed in as straightforward and simple

a manner as possible. There is no theoretical restriction o' the type of
S~particle size distribution which could be incorporated -i.nto the instability

analysis, e.g., an analytical particle distribution function, or an

approximation to a distribution using a discrete set of particle sizes. The

use of even two particle sizes would be a significant step towards

realistically matching the bimodal type particle size distributions

typically found in solid rocket motors.

-I 9-13



The instability calculations presented previously were all based on

a particle diameter of 2p. A few instability solutions were also performed,

varying only particle diameter, in order to assess the behavior of the

solution, with respect to this parameter.

Figure 9-22 shows a comparison of the pressure hist.ries at the
head end for cases with particle diameters of 2, 5 and 9 microns. The

results of Reference 54 indicate that, at the frequency and weight flow

ratio of these test cases, the maximum damping occurs for about 914
particles. The results shown do indicate that as the particle size goes

from 2 to 9 microns damping does increase. The peaked nature of the

damping versus particle size curve is not illustrated, since larger than

9 L particles were not considered in this brief initial look at particle

damping. With A and B values of 11.5 and .64; linear analysis (see

Section 8.1) predicts that the engine would be unstable for all three

particle sizes considered. As seen in Figure 9-22, the present calcu-

lations corroborate the linear results. Thus, this particular engine, could

not be stabilized by efforts to vary aluminum particle size. Increasing

the weight fraction of aluminum would, of course, eventually provide

enough damping, assuming no other deleterious effects were also induced.

The actual particlL size distribution in the experimental engine that this

case was based on, is not known. The engine firings were, however,

spontaneously unstable; thus, there is qualitative agreement between the

current findings and experiment, regardless of the particle size.

P.article damping is, of course, due to the inertia of the solid particles,

which causes them to exert a drag force on the gas in their efforts to keep

up with it. In a constant velocity flow the particles would eventually

attain the gas speed. When the gas is accelerating, however, the

particles can never quite reach the gas velocity, no matter how small

the particles or the rate of acceleration. Figures 9-23 to 9-25 show the

particle and gas total velocities (not velocity perturbations) about one-

quarter cycle past the end of the first cycle (t - 2.9), whe- the gas

velocity is passing through its peak; for each of the three particle sizes

considered. Figure 9-23 shows that the 2, particles are small enough to

just about keep up with the gas. The difference in particle and gas
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velocity being only a fraction of a percent. As the particles become

larger their inertia causes them to lag further and further behind the gas.

Figures 9-24 and 9-25 show approximately a 6% lag for the 5u particles

and a 15% lag for the 9 u particles. Note that the magnitude of the gas

velocity (and pressure, see Figure 9-22) decreases as the
increased from 2 to 9 microns, due to the larger amount of energy
dissipated through drag.

9.5 Effect of Initial Disturbance AmpliLude and Drag Law

The extent to which pulse amplitude serves as a determining factor

in the stability of a solid propellant engine is not yet understood. Nor is

the role of the initial pulse known with respect to its influence upon the

limiting amplitude. The foregoing are, of course, nonlinear phenomena,
S~and, as such, are not amenable to solution by the linear techniques whichhave been the backbone of solid rocket instability analysis, in the past.

The present computer program represents a tool, which, hopefully, will

allow these phenomena to be investigated and the extent of their influence

to be determined.

All that has been done to the present time, is to look at the

• •differences in response (over the first cycle only) to initial disturbances of

varying amplitude. This preliminary effort serves only as a relative

indicator of the extent to which nonlinear effects are encountered at

various amplitudes. Some of these results are presented below.

Figure 9-26 shows a comparison between the head end pressure

histories for two instability solutions which differ only in the magnitude

of the initial pulse. The pressure perturbations have been normalized by

these initial values, in each case, to allow the differences to be more

easily discerned. One solution has been discussed earlier; the 10%

magnitude, A = 11.5, B = .64, first harmonic case. The second solution

employed an initial 2% pulse. As illustrated in Figure 9-26, there is not

too much difference betw en the two solutions. The normalized ampli-

tudes of the two solutions are essentially the same at the end of the first

cycle, however, the history of the larger amplitude wave shows it has
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become somewhat steeper than the smaller amplitude wave. The differences

between the two solutions would continue to grow as time increased, and

the waves amplified (this case was unstable). These results do indicate,

however, that waves in the 0 to 10% amplitude range are not rapidly

distorted due to the influence on nonlinear effects.

A similar pressure plot, which covers a wider amplitude range, is

presented in Figure 9-27, for somewhat different conditions. The

chamber pressure was 360 psi, port to throat area ratio was 4.5. and 1 0 u

particles were used. The transient burning rate parameters, A and B, were

taken to be 10 and .8, respectively. All other conditions were essentially
the same as those for the solutions previously discussed. These new
conditions correspond to significantly increased particle and nozzle

damping and decreased burning response. (The frequency of the first

harmonic for this case was about 1400 hz). It is not surprising, therefore,

that the waves damp quite rapidly.

Two of the curves shown in Figure 9-27 correspond to first harmonic
disturbancec with initial amplitudes of 1% and 50% of the mean pressure.
The third curve also corresponds to a 50% initial disturbance, however,

in this case, a Stokes law drag coefficient was used to see what the

difference would be. (The drag law used in all the other solutions is

given by equation (3-9)). It can be seen that the 50% initial amplitude

waves are subject to large and rapid steepening, even though they have
damped to one-third their starting amplitude during the tirst cycle. Although

not too evident in the Figure, the 50% initial amplitude waves were damped,

percentagewise, somewhat more than the 1% wave. To be exact, the 50%

waves were both damped about 67%, while the 1% wave was damped by

only 63%. Although the conditions for which these solutions were

obtained are not the most representative of solid rocket engines, in

general, the results are interesting because they show the current

model is capable of predicting an amplitude dependence for the damping

rate. This is an important feature, one that is necessary, if a model is

to be capable of calculating limiting amplitudes.
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The results for the two 50% initial amplitude cases are also interesting

since they illustrate the effect changing the drag law. At this large amplitude,

particle Reynolds numbers (based on relative velocity between particle and

gas) on the order of 300 are encountered, far beyond the range where Stokes'

law is valid (Re <• 1). At such Reynolds numbers, the nonlinear drag law

given by equation (3-19) yields a drag coefficient several times larger than

Stokes' law. Despite this fact, Figure 9-27 shows that even such a large

change in drag coefficient did not measurably affect the amount particle

damping even when particle damping was, itself, quite large. (Particle

damping accounts for about 2/3 of the total damping for this case). The

Stokes law wave is seen to have steepened up considerably more than the
other one, however, the amplitudes at the end of one cycle are almost

id 2!ntica 1.

The relative insensitivity of the computed results to the form of the
drag coefficient-Reynolds number relationship can be explained as follows.
Other things being equal, a larger drag coefficient will cause the relative

velocity between particles and gas to decrease. The drag force exerted on

the gas is proportional to CD,',V, therefore, the combination of higher CD

and lower ,IV creates at least a partial balance, leaving the total force

relatively unaffected. That the above actually occurs is graphically portrayed
in Figure 9-28. The solid lines denote the gas and particle velocities
calculated using Stokes' law, while the dashed lines show the same quantities

at the same time as calculated using equation (3-9). As mentioned previously,

the nonlinear drag coefficient is several times larger than its Stokes flow

equivalent, but, as seen in the Figure, the corresponding relative velocities

have an inverse relationship to the magnitude of C

In other cases, where the waves grow or remain large for may cycles,

the form of drag law may be more important, however, based on the present

result, it does not appear that the exact form of the drag law is critical.
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9.6 Velocity Couoling

A method for calculating the nonlinear effects of velocity coupling on

the growth of pressure waves in a ccmbustion chamber has been developed

(see Section 4.3), and a limited number of solutions have been obtained
in order to observe the qualitative characteristics of the model. The scope

of the present effort did not allow for a systematic investigation of the

effects of velocity coupling.

A series of instability solutions have been obtained for an engine

configuration quite similar to that described in Section 9.2, Some of the

dimensions and the propellant properties were modified, however, so the

results are not directly comparable. All of the following solutions used

A = 11.5, B = Bv .64, n = n= .3, and 2p particles. The four solutions

differed as follows:

1. Velocity coupling only, Uth 0

2. Pressure coupling only

3. Pressure and velocity coupling, uth = 0

4. Pressure and velocity coupling, uth = .04

SFigures 9-29 and 9-30 show t.e waveforms of the pressure and burning

rate perturbations, respectively, for the fourth case, i.e., pressure and

velocity coupling with uth = .04. The four curves on each graph depict the

results at t = 0 and approximately at the end of each of the first three cycles.
It can be seen that the pressure initially damps during the first cycle, but
begins to be amplified during the following cycles, as the burning rate response

builds up. At the end of the third cycle the pressure wave has recovered to

just about its initial amplitude. Looking at these pressure waveforms in

Figure 9-29, it can be seen that very little harmonic distortion has been

introduced into the pressure wave over the first three cycles. This

contrasts with the burning rate waveforms in Figure 9-30, which show a

marked degree of distortion (compare Figure 9-30 with Figure 9-13).

The distortion in the burning rate waveform is, of course, due to the

addition of a velocity coupled response which is inherently nonlinear. The

fact that the pressure wave had so little harmonic content is evidence that,

in this case, the energy coupling between the velocity coupled response and
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the pressure wave was quite inefficient. Further evidence of this will be

presented in later figures, as well as an explanation of the reason for this

weak coupling. The pressure and pressure coupled burning rate histories

for this case are, qualitatively, quite similar to those shown previously

in Figures 9-8 and 9-10. Figures 9-31 and 9-32 show the time histories

of the velocity perturbation function (Eqs. 4-71 and 4-72) and the transient

velocity coupled burning rate at several different axial locations. The

nonlinear nature of the velocity driving function is quite evident in

Figure 9-31. The burning response tends to smooth out the distortions of

the driving function as shown in Figure 9-32. There remains, however, a

bias in the burning response that results in the waveform having a positive
contribution greater than the negative contribution during the balance of the

cycle. This bias generates a net positive contribution to the mass and

energy in the chamber and could be responsible for the increase in mean

pressure observed in so many instability traces.

Figure 9-33 shows the pressure histories at x = 0 for case 1, 2 and 4.

The results for case 3 are quite close to those of 2 and 4 and have been left

out for the sake of clarity. Here, again, it is apparent that the energy

transfer from the velocity coupled response is quite inefficient in this case.

Thus, the pressure coupled only and pressure plus velocity coupling pressure

histories are almost identical; while with velocity coupling only, the pressure

damps rather quickly since there is not enough gain to offset the significant

amount of damping in the chamber.

The extremely inefficient transfer of energy from the velocity coupled

response is due to the phase relationship between the velocity coupled burn

rate and the pressure. The results of the linear analysis (Eq. 8-19) show

that the coupling between the combustion and the wave motion is proportional

to (in nondimensional form)
I

p w'dx (9-1)

0

If the waves in the chamber were pure harmonic standing waves the pressure,

velocity and velocity coupled response would vary as follows, in the
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II I
absence of rectification or threshold effects.

P cos (k x)

v• .sin (k. x) (9-2)

-v-sin (k x)

Thus, if the velocity coupled response were linear (i.e., rectification and

threshold effects nc. -"esent), then Equation (9-1) shows that the coupling
between the velocity coupled response and the pressure wave would be zero.

In the present model the amount of energy transferred to the pressure wave

thus depends upon how much rectification and threshold effects modify the

waveform of the velocity coupled response. For the conditions of the present

solutions the coupling remains quite weak. General con sions about the

effect of velocity coupling must be deferred until solutions at a range of

conditions, and for longer durations, have been obtained.
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10. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

10.1 Summary and Conclusions

After surveying the existing experimental and analytical solid rocket

Instability results, a new analytical instability model has been developed
and solved. Unlike previous analytical solutions, the current longitudinal

instability model is nonlinear and all of the various phenomena affecting the

flow and stability of a motor can be treated in a coupled manner. (All of the

possible flow and combustion processes are not yet included, but the model
is general enough to allow for their future incorporation).

The two primary elements of the current instability analysis are a
method of characteristics solution of the two phase flow in the combustion

chamber of the motor, and a coupled calculation of a transient burning
rate. The transient burning rate analysis presented, herein, is a unique and
interesting development. It Is based on an extension of the most popular,
linear, harmonic combustion response model. The current methrc allows the
calculation of propellant burning response to a pressure disturbance of arbitrary

waveform, for all time, including the period Immediately following the Initiation

of the disturbance. The analysis also includes a model for velocity coupled
response. Therefore, for the first time, the nonlinear effects of velocity

coupling on the growth of pressure waves in a combustion chamber can be com-

puted.

The instability solution, itself, begins with the calculation of the steady

state two-phasa flow in the motor. The flow in the combustion chamber is

calculated by numerically integrating the equations of motion, in conservative
form. The nozzle flow and choked flow condition are found using the constant

fractional lag approximation. The steady state conditions are then perturbed
and the subsequent wave motion in the motor is calculated numerically, using

the method of characteristics. The nature of the engine response is dependent

P•, upon the interaction the various gain and loss mechanisms in the engine; which

are, in turn, a function of the propellant burning response, the size and

amount of particulate matter present, the magnitude and shape of the initial

disturbance and the geometrical configuration of the motor.
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In order to proceed with the development and assessment of the current
approach in the most rational manner, a number of simplifying assumptions

were made. Only motors with cylindrically perforated grain were considered.

The gasdynamic flow was assumed to be one-dimensional and the particles

in the gas stream were taken to be of uniform size and inert; thereby ignoring

the processes leading to the formation of the particulate matter. The nozzle

-1ow was assumed to be quasi-steady.

A series of instability solutions have been calculated, wherein some

of the main parameters such as particle size, burning rate constants, Initial

disturbance waveform and magnitude and type of response coupling have been

varied, in an attempt to qualitatively assess the behavior and validity of the

present model. The results obtained are quite encouraging. From all appear-

ances, the qualitative behavior of the model is quite realistic and comparisons

with one set of data tend to corroborate its efficacy.

When this effort was initiated it was hoped that it would lead to a

* greater understanding of longitudinal combustion instability, and, thereby

to the realization of an improved predictive capability. It appears that these

goals wilt be realized, since the limited number of instability solutions I
obtained to date have already provided some new insights, or confirmed what

previously could only he hypothesized.

For instance, when test motors are pulsed, to initiate an instability,

the initial disturbance is often observed to partially damp, before ultimately

being amplified. Linear analysis cannot account for this behavior, however,

as "necking" can, in all likelihood, be attributed to the existence of a time

lag between the occurrence of a disturbance and the time at which the pro-

pellant burning rate can fully respond to it. During this initial period the

surface combustion cannot supply oneigy to the wave at a rate fast enough

to overcome the effect of the always present damping mechanisms. Given

time, however, the propellant response builds up, in many cases, to the

point where a net amount of energy is supplied to the wave, and it amplifies.

The duration, or even existehce, of such a response lag depends upon the

values of the parameters appearing in the transient burning rate model. By

varying these constants the initial response -nay be made to build up slowly,

rapidly, or even overshoot, the response level it will attain at later times.

Attempts to correlate the calculated and measured wave amplitudes immediately

following pulsing should, therefore, provide some input towards the empirical
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determination of the burning rate parameters. The selection of values for

A and B, as these parameters are denoted, for quantitative use, must also

be based on the ability of the calculated results to match measured growth

rates and limiting amplitudes.

In many instances, experimental pressure traces, under unstable

conditions, are observed to have relatively little harmonic contenlt, even at

relatively high amplitudes. This is in contrast to the results obtained for

acoustic waves driven in closed resonant tubes, where significant wave

steepening, and even weak shocks, are observed even at relatively low

amplitudes. It has been felt that this difference in behavior must be attri-

butable to some characteristic of the surface combustion response which

allows the higher harmonics to be attenuated while simultdneously amplifying

the primary acoustic mode. Such a cause and effect relationship has, however,

never been previously demonstrated analytically. It was, therefore, quite

gratifying to observe such an effect in the present instability solutions. The

results presented earlier conclusively demonstrate that the current transient

burning rate model is capable of producing a response which discriminates

between the various harmonics contained in a general pressure wave;

amplifying one, while attenuating several or all of the remaining harmonics.

These results, therefore, appear to confirm the hypothesis that the low

harmonic content exhibited by many instability traces is du,% to the attenuated

response of the propellant to the higher frequency elements of a disturbance.

To date, instability solutions have not been continued out to a large

number of cycles, therefore, the ability of the current model to predict a

limiting amplitude has not been demonstrated. The present results do, how-

ever, exhibit a nonlinear feature which while not guaranteeing that a limit-

ing smplitude will be reached, must be present If such limiting is to occur.

Thet feature Is the amplitude dependence of both of the ga.n and damping

mechanisms.

It has also been concluded from the results that calculated particle

damping effects do not appear to be sensitive to the exact form of the drag

coefficient relationship. While based on only limited results, this

circumstance, if corroborated by further study, iL a welcome one, since
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there is still some disagreement about the proper variation of CD with

Reynolds number.

10.2 Recommendations

Based on results achieved to date, the method of analyzing longi-

tudinal combustion instability developed, herein, certainly merits further

investigation; including quantitative comparison with experimental data.

In oraer to achieve such quantitative agreement it may be necessary to

elimii.,, some of the simplifying assumptions made during this initial

effort. It may also be desirable to relax some of the other restrictions,

currently imposed, in order to widen the applicability of the method. Some

of the possible refinements or extensions of the present work are discussed

below.

In order to fully assess the current instability model, or any further

modifications to it, solutions must be carried out for many more cycles than

have been computed to date. Only in this way can it be determined if the

model is capabie of predicting realistic growth rates and limiting amplitudes.

When such solutions are sought, any improvements that could be made in com-

putational efficiency would be quite significant from an economic standpoint.

X In this regard, it appears that replacement of the method of characteristics

solution of the fluid dynamic equations of motion with a straight finite dif-

ference solution of the Lax-Wendroff type (see Ref. 68, for example) would

be in order.

Whenthe method of characteristics was selected as the numerical

technique to be used in solving the flow equations, the nature of the

* transient burning rate analysis was, as yet, unknown. As it turned out,

the need for pressure histories at fixed axial locations was satisfied by

interpolation, and rectification of the characteristics mesh at every other

time step. These steps could be eliminated If the computations were per-

formed in a rectilinear mesh to begin with. The difference solution of the

equations of motion is also somewhat simpler and more straightforward

with the finite difference approach. It is estimated that a change to a Lax-

Wendroff schame of the type discussed in Reference 68 could reduce the

computational time by 30% or more, from the current level of about 2 min-

utes per cycle ( on a CDC 6600 computer).
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The development of an alternative, or improved method for calculating
transient burning response should also be considered, since the relatively large

amount of computer storage currently required Is not a desirable feature. Con-

sideration should also be given to the development of a nonlinear transient re-

sponse model for pressure coupling. Further investigation of the velocity coupling

phenomena should also be considered, as the existing model may not prove to'be

adequate. A transient response model based on the nonlinear solution of the heat

conduction equation may be able to provide a framework within which all of the

aforementioned items can be accomplished.

It may also be possible to reduce the number of axial locations at which

the transient burning response need be calculated. Currently, linear interpolation

is used to calculate burning rate at locations between those at which it is directly

computed. Replacing the linear interpolation with a higher order spline interpolation

procedure should allow equivalent accuracy to be achieved with larger spacing be-

tween the locations at which transient burning response is calculated.

Other refinements, or extensions, that would be worthwhile, and not

too difficult to incorporate into the solution are the ability to handle more

complex motor geometries, and the adoption of a more realistic particle size

distribution. The additional geometries that could still be considered on a

one-dimensional basis include more general grain perforations, and motor

cases having gaps in the grain, end grain, or a grain that does not extend the

full length of the chamber. It would be possible to incorporate a particle size

distribution function into the analysis, however, it is recommended that the

next step in this direction should be the extension to two discrete particle sizes

groups. Such an extension wouid be relatively simple, yet it would be a sig-

nlficant step towards realistic]l, -.,3tching the bimodal type particle size dis-

tributions typically found in sc t.1 rocket motors.

The development of a model for metal particle formation and burning is

not recommended at this time. The whole mechanism of particle formation

is still subject to wide uncertainties, and the relative significance of

particle burning as a determinant of motor stability has yet to be established.

If these processes can be realistically modeled and are shown to be

important, at some later time, there is no intrinsic reason why they cannot

be incorporated into the instability model.
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APPENDIX A

THE TRANSIENT BURNING RESPONSE--SOME SPECIAL CASES

The final form of the current transient burning rate model (Equation

(4-65), or the approximation to it, Equation (4-68)) is not an explicit

formula for m'/ m, and is not very useful for formal analysis. For example,

it is not possible to deduce from (4-65) closed form results for the transient

burning rate behavior at all times T>0. It is relatively easy, however, to

obtain short time approximations and the long time steady-state behavior, valid
after all initial transients have died out. This latter property may be used to

advantage by comparing the long time "steady-state" results obtained from

Equation (4-65) to the known response for two special cases. Such a com-

parison serves as, at least, a partial consistency check on the current
formulation.

1. Response to a Harmonic Pressure Oscillation for T-4

For this case,

• • (T) e e Al

After a long time, the fluctuation of mass flux also varies harmonically, but

with phase shift , and amplitude IRbIfb I

m = IRbei(4 WT + CO) (A-2)

Substitution of (A-i) and (A-2) into (4-65) should lead to the result that

R•I exp(ip)) is the original response function Rb given by (4-34) with

A- 1



"n n O, After the substitution, one has
. _- + 0 T p

IRb _et'= IR.ie' L 1- 2--, e 0 - 2  e-p depdd}j
0 0

(A- 3)

+2nABI.L , e~' +e-~ e~

The integrals .aay be simply evaluated, in the limit as T 4-, aS follows:

T
1 p _ d__ 1 2 5 1

e ,p'ý 2 e- dr

0 ~ 0

(A-4)
e-p '\ epg d• 1  1-e-pJ - _1

-P - J T•' p :0• = p

where p 1 + i4 . With the result (A-4) Equation (A-3) becomes

SRb le R iRe ++.A,-c
b b p_ I J+2nAB(i

which can be solved and rearranged to give

I Rb• e" nA
le~~~ = r' -oI+21 pf• 1 i2

(A-5)
S+4•

2nAB C p 2)

as required.

A-2
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2. Response to a Step Change of Pressure for T -4

Now set

P' = A(T > 0)(A6

After a long time, m'/im should approach a constant p, equal to nA. As
above, the contributions for T small, from m'/F- different from P, are

supposed negligible. Hence, (4-65) becomes

~ T
p.p {1 -r - aec 2 e- e

S0 0

0 (A-7)

T~ T

0 0

By a simple transformation,

T

I• e =d erf -• 1 (A-8)
71 

T 
-

0

and (A-7) becomes, for large T:

+u ' 12 O2•2J +4nABA (A-9)

From the definitions (4-62), it follows that

1I+ 02 - 01c2 = 1 -4AB

and

U =LU(l-4AB) + 4 nABA (A-IO)

A-3



which produces the correct result, Pi = nA.

3. Exact Solution of Equation (4-61) for Step and Exponential Changes
of Pressure

In addition to checking that the numerical solution for the transient

burning rate aoproached the proper long time limits, indicated in Sections

A. 1 and A.2 above, for harmonic and step pressure disturbances, a further

accuracy check has been made. The numerical results have been compared
with exact results deduced from Equation (4-61), for the response to step
and exponential changes of pressure. All of these comparisons corroborated

the numerical calculations. Exact solutions for step and exponential

pressure changes may be found as follows.

An exponential pressure change which approaches the finite value Li

for long times is repreaented by

L. = (I-e-"T (A- 11)
FJ

The Laplace transform in the variable p is

__ (p) = \ 4e' ,(l-eO )e- d:
0

'p (A-12)

4 _ 4 46

where
, L •-• = - •(A-13)

•3

Equation (4-61) becomes

e -P '- e• l~ dp
2 nABB L ] 2)i = (4J'C 1  0 2 L P -[ l -,e'3 p
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Inversion is accomplished by using standard tables, after the integrand
has been expanded in partial fractions. The result is

1 m' (T) (DC)e I erfc (-cl
2nABA F(D-C I)F e r - )

+ (D2 - C2 )o2 e erfc (-a2VfT)

+ D erfc (-F) (A- 14)

•. - 03 C3 e( )¶erfc (- 03 J•)

(G' - T)

+o0 C4 e(0 l erfc (oc3  -

where 03~ = T-I- and the constants are:

1+0i 1:
cl = (o _c2)(o• _•) D2=(o2_oi)(u _l)

C2 = (o2-ol)(O5•-o)" D3 = (1-01)(1-o2) =4A--B

1+ 02 - TA15
1+o3

3 =-o3(o3_o2)(03 4)

C4=203(03 +Ol)(03 +c2)

1
1 (o1~o2)(l)

A-S

wher a 3 q 1- an theconsantsare



These constants have the following useful properties which can be verified
by direct computation.

4 3z C. =0 D. 0t=1 i=1 1

3
S.C.=0 o. D=0 (A-16)i=1 l i=1 1 1

4 3
1=11 1 I1 1 D

Also, C2 is the complex conjugate of CI and D2 is the complex conjugate

of D1.

The exact solution for a step change in pressure may be simply

obtained from Equation (A-14) by setting C1, C2 , C3 and C4 all equal to

zero. Equation (A-14) is not in the form best suited to obtaining numerical

values for m'/m, for, while all of Cie quantities on the r.h.s. of the,

equation are complex numbers, m'/fii is real.

The real form of m'/fii may be found as follows. The definitions

given by Equation (4-62) are written as

G 1x + iy

(A-17)

2 =X- iyS~2

and th: following identities are used:

erfq(-z) = 1 -erfc (-z) 1 + erf(z) A-18)

The error function, itself, can be expressed in series form as

erf(z) W 2 nA- 2n+19)
Tr n=0 n!(2n + 1)
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Using Equations (A-17 to A-19), Equation (A-14), with the Ci = 0, can then

be expressed, after much algebra, as

1 mI, 2R+1_ (_,,n T ni

2nABAf•f 1 4ABL T ni! (2n+ n)I• n=0(A-2 0)

+ z -) R(nl cos (2n+l) 6- S sin (2n+l) 0
T n= n(2n + 1T

where;

R = - eU-T( cos vT- ij sinvT)

S = - e T( COS VT + • sin VT)

u= x2 - y 21

v 2xy

r= a-~y=~= ~(A-2 1)
ax - y =8A---B a A-

n= x + CLy

1
8AB

S=8yAB
r (T C, ,a+•] ( i2(x-1 12

8= tan-i y./x

The real part of Equation (A-14) with the C. i 0 (corresponding to the solution
for an exporential pressure change) may be established in a similar manner.

A-7



4. Transient Response to Harmonic Pressure Disturbancos

The value of the response function obtained from Equation (4-34)

actually corresponds to that which would be attained after many cycles of

a harmonic disturbance. During the period immediately following the initiation

of a disturbance the value of the response function may be quite different

as a result of transient phenomena. The portion of the response resulting

from the start up process following initiation of the disturbance damps out

exponentially, and the limiting value given by Equatior (4-34) is asympto-

tically approached as time increases. The number of wave cycles required

for these initial transients to damp out in response to a harmonic disturbance

varies quite significantly as a function of A and B. The response may also

initially overshoot, or undershoot, the asymptotic value.

Examples of the transient burning rate response to a pressure disturbance

of the form AP . 1 cos rrt are presented in Figures A-1 to A-3, for three setsI of A and B values:

A 15, B= 7

A = 11.5 B = .64

A=20 B= .9

The ;e examples illustrate the significant effect of A and B on the

initial characteristics of the response, as well as the effect on the ultimate

magnitude of the response function.
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